Over the last decade, the GaN power market has been driven mostly by high-end, high-performance applications offering high-frequency switching, low on-resistance, and smaller form factor at system level. But things are changing for GaN power in 2019 - it’s entering mainstream consumer applications! Following its inclusion in several aftermarket chargers, Chinese OEM Oppo announced the adoption of a GaN HEMT device in its 65W inbox fast-chargers for its new Reno Ace flagship model. This is the first time GaN power devices have entered a high-volume smartphone market, and it is likely to be a real game-changer for GaN power.

In addition to the exciting consumer market, GaN is attracting lots of attention from various OEMs and Tier1s, i.e. Valeo and Continental in the automotive industry. Indeed, GaN is very interesting for emerging 48V DC/DC in mild hybrid electric vehicles and on-board chargers in electrified vehicles. Players like EPC and Transphorm have already obtained AEC qualification, and GaN Systems, which benefits from its BMW i Ventures investment, expects qualification by next year. These device manufacturers are working closely with packaging companies like ASE, AT&S, and Schweizer to enter the OEM supply chain and enjoy increasing volumes starting in 2023 - 2024 according to Yole Développement.

GaN is also expected to penetrate industrial and telecom power supply applications including datacom, base stations, UPS, and industrial LiDAR applications. Following the first small-volume adoption of GaN-based power supplies by Eteck, Delta, and BelPower over the last few years, Yole analysts’ expect broader penetration of GaN in the near future, with increasing efficiency requirements in data centers benefiting from enhanced GaN device maturity + cost-competitiveness.

Overall, compared to Yole’s 2018 report and its two market scenarios, this year’s market forecast is much brighter than 2018’s base-case thanks to GaN’s adoption in Oppo’s inbox fast chargers. Driven mainly by such consumer fast-charger applications, Yole projects that the GaN power business will exceed $350M by 2024, with a compound annual growth rate (CAGR) of 85%.

This report conveys Yole’s understanding of GaN device implementation in different market segments, as well as our insights regarding the market’s current dynamics and future evolution.

THE GaN POWER MARKET ACHIEVES ITS FIRST MILESTONE

Over the last decade, the GaN power market has been driven mostly by high-end, high-performance applications offering high-frequency switching, low on-resistance, and smaller form factor at system level. But things are changing for GaN power in 2019 - it’s entering mainstream consumer applications! Following its inclusion in several aftermarket chargers, Chinese OEM Oppo announced the adoption of a GaN HEMT device in its 65W inbox fast-chargers for its new Reno Ace flagship model. This is the first time GaN power devices have entered a high-volume smartphone market, and it is likely to be a real game-changer for GaN power.

In addition to the exciting consumer market, GaN is attracting lots of attention from various OEMs and Tier1s, i.e. Valeo and Continental in the automotive industry. Indeed, GaN is very interesting for emerging 48V DC/DC in mild hybrid electric vehicles and on-board chargers in electrified vehicles. Players like EPC and Transphorm have already obtained AEC qualification, and GaN Systems, which benefits from its BMW i Ventures investment, expects qualification by next year. These device manufacturers are working closely with packaging companies like ASE, AT&S, and Schweizer to enter the OEM supply chain and enjoy increasing volumes starting in 2023 - 2024 according to Yole Développement.

GaN is also expected to penetrate industrial and telecom power supply applications including datacom, base stations, UPS, and industrial LiDAR applications. Following the first small-volume adoption of GaN-based power supplies by Eteck, Delta, and BelPower over the last few years, Yole analysts’ expect broader penetration of GaN in the near future, with increasing efficiency requirements in data centers benefiting from enhanced GaN device maturity + cost-competitiveness.

Overall, compared to Yole’s 2018 report and its two market scenarios, this year’s market forecast is much brighter than 2018’s base-case thanks to GaN’s adoption in Oppo’s inbox fast chargers. Driven mainly by such consumer fast-charger applications, Yole projects that the GaN power business will exceed $350M by 2024, with a compound annual growth rate (CAGR) of 85%.

This report conveys Yole’s understanding of GaN device implementation in different market segments, as well as our insights regarding the market’s current dynamics and future evolution.
have managed to enter at least 50 aftermarket fast-charger brands, including Ravpower, Anker, and Aukey. As mentioned earlier, one of the year’s most significant developments was Oppo’s adoption of GaN HEMTs for 65W inbox fast charging in its high-end model. What other possible market scenarios exist for GaN adoption in this mass market?

Yole anticipates proliferation of Chinese OEM challengers such as Oppo, Vivo, and Xiaomi in the emerging 5G luxury smartphone business, which demands significant technology differentiation. Oppo’s SuperVOOC 2.0 meets these demands, with its reduced charging time and charger size. Other Chinese OEMs have also announced very high-power fast charging (beyond 100W), and could potentially adopt GaN devices in the coming years. In light of these prospective achievements, the overall GaN device market is nominally expected to surpass $350M by 2024.

In a more optimistic scenario (and in addition to Chinese OEMs deploying high-power fast chargers), GaN could also be adopted by other players - including leading OEMs like Apple, Huawei, and Samsung - after achieving high maturity and market acceptance as well as cost-competitiveness compared to Si MOSFETs. In the best-case, this could create truly remarkable market opportunities.

In either of these scenarios, Yole analysts’ expect significant growth: a CAGR of at least 92% from 2018 - 2024 for the GaN-based power supply market.

In this report, Yole invites you to discover diverse market scenarios for GaN-based consumer fast-charging applications, and broaden your understanding of GaN’s innovative technology and landscape.

For many years the GaN power device landscape was dominated by pure GaN start-up players like EPC, GaN Systems, Transphorm, and Navitas, which chose the foundry model and mostly used TSMC, Episil, or X-FAB. But with the GaN market’s resurgence, more and more players are arriving. Recently, new foundries have also announced very high-power fast charging (beyond 100W), and could potentially adopt GaN devices in the coming years. In light of these prospective achievements, the overall GaN device market is nominally expected to surpass $350M by 2024.

In a more optimistic scenario (and in addition to Chinese OEMs deploying high-power fast chargers), GaN could also be adopted by other players - including leading OEMs like Apple, Huawei, and Samsung - after achieving high maturity and market acceptance as well as cost-competitiveness compared to Si MOSFETs. In the best-case, this could create truly remarkable market opportunities.

In either of these scenarios, Yole analysts’ expect significant growth: a CAGR of at least 92% from 2018 - 2024 for the GaN-based power supply market.

In this report, Yole invites you to discover diverse market scenarios for GaN-based consumer fast-charging applications, and broaden your understanding of GaN’s innovative technology and landscape.

For many years the GaN power device landscape was dominated by pure GaN start-up players like EPC, GaN Systems, Transphorm, and Navitas, which chose the foundry model and mostly used TSMC, Episil, or X-FAB. But with the GaN market’s resurgence, more and more players are arriving. Recently, new foundries have also announced very high-power fast charging (beyond 100W), and could potentially adopt GaN devices in the coming years. In light of these prospective achievements, the overall GaN device market is nominally expected to surpass $350M by 2024.

In a more optimistic scenario (and in addition to Chinese OEMs deploying high-power fast chargers), GaN could also be adopted by other players - including leading OEMs like Apple, Huawei, and Samsung - after achieving high maturity and market acceptance as well as cost-competitiveness compared to Si MOSFETs. In the best-case, this could create truly remarkable market opportunities.

In either of these scenarios, Yole analysts’ expect significant growth: a CAGR of at least 92% from 2018 - 2024 for the GaN-based power supply market.

In this report, Yole invites you to discover diverse market scenarios for GaN-based consumer fast-charging applications, and broaden your understanding of GaN’s innovative technology and landscape.

For many years the GaN power device landscape was dominated by pure GaN start-up players like EPC, GaN Systems, Transphorm, and Navitas, which chose the foundry model and mostly used TSMC, Episil, or X-FAB. But with the GaN market’s resurgence, more and more players are arriving. Recently, new foundries have also announced very high-power fast charging (beyond 100W), and could potentially adopt GaN devices in the coming years. In light of these prospective achievements, the overall GaN device market is nominally expected to surpass $350M by 2024.

In a more optimistic scenario (and in addition to Chinese OEMs deploying high-power fast chargers), GaN could also be adopted by other players - including leading OEMs like Apple, Huawei, and Samsung - after achieving high maturity and market acceptance as well as cost-competitiveness compared to Si MOSFETs. In the best-case, this could create truly remarkable market opportunities.

In either of these scenarios, Yole analysts’ expect significant growth: a CAGR of at least 92% from 2018 - 2024 for the GaN-based power supply market.

In this report, Yole invites you to discover diverse market scenarios for GaN-based consumer fast-charging applications, and broaden your understanding of GaN’s innovative technology and landscape.

For many years the GaN power device landscape was dominated by pure GaN start-up players like EPC, GaN Systems, Transphorm, and Navitas, which chose the foundry model and mostly used TSMC, Episil, or X-FAB. But with the GaN market’s resurgence, more and more players are arriving. Recently, new foundries have also announced very high-power fast charging (beyond 100W), and could potentially adopt GaN devices in the coming years. In light of these prospective achievements, the overall GaN device market is nominally expected to surpass $350M by 2024.

In a more optimistic scenario (and in addition to Chinese OEMs deploying high-power fast chargers), GaN could also be adopted by other players - including leading OEMs like Apple, Huawei, and Samsung - after achieving high maturity and market acceptance as well as cost-competitiveness compared to Si MOSFETs. In the best-case, this could create truly remarkable market opportunities.

In either of these scenarios, Yole analysts’ expect significant growth: a CAGR of at least 92% from 2018 - 2024 for the GaN-based power supply market.

In this report, Yole invites you to discover diverse market scenarios for GaN-based consumer fast-charging applications, and broaden your understanding of GaN’s innovative technology and landscape.

For many years the GaN power device landscape was dominated by pure GaN start-up players like EPC, GaN Systems, Transphorm, and Navitas, which chose the foundry model and mostly used TSMC, Episil, or X-FAB. But with the GaN market’s resurgence, more and more players are arriving. Recently, new foundries have also announced very high-power fast charging (beyond 100W), and could potentially adopt GaN devices in the coming years. In light of these prospective achievements, the overall GaN device market is nominally expected to surpass $350M by 2024.

In a more optimistic scenario (and in addition to Chinese OEMs deploying high-power fast chargers), GaN could also be adopted by other players - including leading OEMs like Apple, Huawei, and Samsung - after achieving high maturity and market acceptance as well as cost-competitiveness compared to Si MOSFETs. In the best-case, this could create truly remarkable market opportunities.

In either of these scenarios, Yole analysts’ expect significant growth: a CAGR of at least 92% from 2018 - 2024 for the GaN-based power supply market.

In this report, Yole invites you to discover diverse market scenarios for GaN-based consumer fast-charging applications, and broaden your understanding of GaN’s innovative technology and landscape.

For many years the GaN power device landscape was dominated by pure GaN start-up players like EPC, GaN Systems, Transphorm, and Navitas, which chose the foundry model and mostly used TSMC, Episil, or X-FAB. But with the GaN market’s resurgence, more and more players are arriving. Recently, new foundries have also announced very high-power fast charging (beyond 100W), and could potentially adopt GaN devices in the coming years. In light of these prospective achievements, the overall GaN device market is nominally expected to surpass $350M by 2024.

In a more optimistic scenario (and in addition to Chinese OEMs deploying high-power fast chargers), GaN could also be adopted by other players - including leading OEMs like Apple, Huawei, and Samsung - after achieving high maturity and market acceptance as well as cost-competitiveness compared to Si MOSFETs. In the best-case, this could create truly remarkable market opportunities.

In either of these scenarios, Yole analysts’ expect significant growth: a CAGR of at least 92% from 2018 - 2024 for the GaN-based power supply market.

In this report, Yole invites you to discover diverse market scenarios for GaN-based consumer fast-charging applications, and broaden your understanding of GaN’s innovative technology and landscape.
between all of these actors and their benefit. A fierce competition is likely to break production capacity to derive considerable their GaN-on-sapphire know-how and high LED manufacturers may want to leverage from high-volume opportunities. For example, more players are expected to enter and benefit In a GaN power market bursting with potential, mainstream GaN-on-Si technology.

- a considerable departure from today's technology is influenced by GaN-on-sapphire integration technologies like SiP and SoC, and compares them to discrete devices.

COMPANIES CITED IN THE REPORT (non exhaustive list)

TABLE OF CONTENTS (complete content on i-Micronews.com)

<table>
<thead>
<tr>
<th>Context</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>> Report scope</td>
<td>39</td>
</tr>
<tr>
<td>> Global power electronics - drivers</td>
<td></td>
</tr>
<tr>
<td>> Key applications in power electronics</td>
<td></td>
</tr>
<tr>
<td>> & management</td>
<td></td>
</tr>
<tr>
<td>> Power device technology positioning (2019)</td>
<td></td>
</tr>
<tr>
<td>> Comparison with Yole’s previous forecasts</td>
<td></td>
</tr>
<tr>
<td>> Power GaN market, compared to the SiC and silicon markets</td>
<td></td>
</tr>
<tr>
<td>Market forecasts</td>
<td>46</td>
</tr>
<tr>
<td>> Device market and forecasts (value, units, wafers)</td>
<td></td>
</tr>
<tr>
<td>> Total GaN power market, split by technology (discrete vs. GaN IC)</td>
<td></td>
</tr>
<tr>
<td>> Power supply</td>
<td></td>
</tr>
<tr>
<td>> Focus on the fast charging market</td>
<td></td>
</tr>
<tr>
<td>> Others - Industrial, telecom, defense</td>
<td></td>
</tr>
<tr>
<td>> EV/HEV</td>
<td></td>
</tr>
<tr>
<td>> PV inverters and energy storage</td>
<td></td>
</tr>
<tr>
<td>> UPS</td>
<td></td>
</tr>
<tr>
<td>> Wireless charging</td>
<td></td>
</tr>
<tr>
<td>> Envelope tracking</td>
<td></td>
</tr>
<tr>
<td>> LiDAR</td>
<td></td>
</tr>
<tr>
<td>> Other applications</td>
<td></td>
</tr>
<tr>
<td>> Wafer and epitwaver starts (by market, applications, devices)</td>
<td></td>
</tr>
<tr>
<td>Market trends</td>
<td>61</td>
</tr>
<tr>
<td>> GaN power market - Segmentation</td>
<td></td>
</tr>
<tr>
<td>> Economic requirements/applications</td>
<td></td>
</tr>
<tr>
<td>> Market drivers and technical requirements, per applicative markets</td>
<td></td>
</tr>
<tr>
<td>> Key players, per segment</td>
<td></td>
</tr>
<tr>
<td>> GaN industry - Development timeline</td>
<td>137</td>
</tr>
<tr>
<td>> 2019 power GaN industry</td>
<td></td>
</tr>
<tr>
<td>> Player market share/supply chain market share & ecosystem analysis, business models, players’ strategy, supply chain analysis</td>
<td></td>
</tr>
<tr>
<td>> High-volume market opportunity</td>
<td></td>
</tr>
<tr>
<td>> Focus on the power GaN foundry business and device manufacturers</td>
<td></td>
</tr>
<tr>
<td>> U.S./China trade war - Impact</td>
<td></td>
</tr>
<tr>
<td>> Player rankings, with financial analysis and value chain status/evolution</td>
<td></td>
</tr>
<tr>
<td>GaN power device - Technology trends</td>
<td>157</td>
</tr>
<tr>
<td>> GaN device - technology description</td>
<td></td>
</tr>
<tr>
<td>> GaN diodes and transistors</td>
<td></td>
</tr>
<tr>
<td>> E-mode vs. D-mode</td>
<td></td>
</tr>
<tr>
<td>> Technology processes</td>
<td></td>
</tr>
<tr>
<td>> Epitaxy</td>
<td></td>
</tr>
<tr>
<td>> GaN-on-silicon technology</td>
<td></td>
</tr>
<tr>
<td>> GaN-on-sapphire technology</td>
<td></td>
</tr>
<tr>
<td>> GaN devices - reliability</td>
<td></td>
</tr>
<tr>
<td>> Gan power device - integration aspects</td>
<td></td>
</tr>
<tr>
<td>> Discrete</td>
<td></td>
</tr>
<tr>
<td>> Power GaN SiP</td>
<td></td>
</tr>
<tr>
<td>> Power GaN SoC</td>
<td></td>
</tr>
<tr>
<td>> GaN power device packaging</td>
<td></td>
</tr>
<tr>
<td>> Discrete</td>
<td></td>
</tr>
<tr>
<td>> Embedded</td>
<td></td>
</tr>
<tr>
<td>> WLP</td>
<td></td>
</tr>
<tr>
<td>> Others</td>
<td></td>
</tr>
<tr>
<td>> Commercially-available products</td>
<td>212</td>
</tr>
<tr>
<td>Outlook & perspectives</td>
<td></td>
</tr>
<tr>
<td>Yole Développement presentation</td>
<td>220</td>
</tr>
</tbody>
</table>

RELATED REPORTS

Benefit from our Bundle & Annual Subscription offers and access our analyses at the best available price and with great advantages

- Power Management IC: Technology, Industry and Trends 2019
- Status of the Power Electronics Industry 2019
- LiDAR for Automotive and Industrial Applications 2019
- Power GaN 2019 – Patent Landscape Analyses
- GaN-on-Si HEMT vs Superjunction MOSFET Comparison 2019

Find all our reports on www.i-micronews.com

AUTHORS

As a Technology & Market Analyst, Compound Semiconductors, Ezgi Dogmus, PhD is member of the Power & Wireless division at Yole Développement (Yole). She is daily contributing to the development of these activities with a dedicated collection of market & technology reports as well as custom consulting projects. Prior Yole, Ezgi was deeply involved in the development of GaN-based solutions at IEMN (Lille, France). Ezgi also participated in numerous international conferences and has authored or co-authored more than 12 papers. Upon graduating from University of Augsburg (Germany) and Grenoble Institute of Technology (France), Ezgi received her PhD in Microelectronics at IEMN (France).

Hong Lin, PhD, is a Principal Analyst, Compound Semiconductors at Yole Développement (Yole). Since 2013, Hong has been involved in analyzing the compound semiconductor market with dedicated technical, strategic, market and financial analyses. Prior to Yole, she worked as an R&D Engineer at Newstep Technologies. Dr Hong Lin holds a PhD in physics and chemistry of materials from the University of Pierre & Marie Curie (Paris VI, France).

Ana Villamor, PhD serves as a Technology & Market Analyst, Power Electronics & Compound Semiconductors at Yole Développement (Yole). She is involved in many custom studies and reports focused on emerging power electronics technologies including device technology and reliability analysis. Previously Ana was involved in a high-added value collaboration related to SJ Power MOSFETs, within the CNM research center for the leading power electronic company ON Semiconductor. She holds an Electronics Engineering degree completed by a Master and PhD in micro and nano electronics from Universitat Autonoma de Barcelona (SP).
ORDER FORM
Power GaN 2019: Epitaxy, Devices, Applications & Technology Trends

BILL TO

Name (Mr/Ms/Dr/Pr):

Job Title:

Company:

Address:

City:

State:

Postcode/Zip:

Country:

*VAT ID Number for EU members:

Tel:

Email:

Date:

PRODUCT ORDER - Ref YD19056

Please enter my order for above named report:

☐ One user license*: Euro 5,990
☐ Multi user license: Euro 6,490

- The report will be ready for delivery from December 11, 2019
- For price in dollars, please use the day’s exchange rate. All reports are delivered electronically at payment reception. For French customers, add 20% for VAT

I hereby accept Yole Développement’s Terms and Conditions of Sale(1)

Signature:

*One user license means only one person at the company can use the report.

PAYMENT

BY CREDIT CARD

☐ Visa ☐ Mastercard ☐ Amex

Name of the Card Holder:

Credit Card Number:

Card Verification Value (3 digits except AMEX: 4 digits):

Expiration date:

BY BANK TRANSFER

BANK INFO: HSBC, 1 place de la Bourse, F-69002 Lyon, France,
Bank code: 30056, Branch code: 00170
Account No: 0170 200 156 87,
SWIFT or BIC code: CCPRFRPP,
IBAN: FR76 3005 6001 7001 7020 0156 587

RETURN ORDER BY

• MAIL: YOLE DÉVELOPPEMENT, Le Quartz,
75 Cours Emile Zola, 69100 Villeurbanne/Lyon - France

SALES CONTACTS

• Western US & Canada - Steve Laferriere:
+ 1 310 600-8267 – laferriere@yole.fr
• Eastern US & Canada - Chris Youman:
+1 919 607 9839 – chris.youman@yole.fr
• Europe & RoW - Lizzie Levenez:
+ 49 15 123 544 182 – levenez@yole.fr
• Japan & Rest of Asia - Takashi Onozawa:
+81-80-4371-4887 – onozawa@yole.fr
• Greater China - Mavis Wang:
+886 979 336 809 – wang@yole.fr
• Korea - Peter OK:
+82 10 4089 0233 – peter.ok@yole.fr
• Specific inquiries: +33 472 830 180 – info@yole.fr

About Yole Développement

Founded in 1998, Yole Développement (Yole) has grown to become a group of companies providing marketing, technology and strategy consulting, media and corporate finance services, reverse engineering and reverse costing services and well as IP and patent analysis. With a strong focus on emerging applications using silicon and/or micro manufacturing, the Yole group of companies has expanded to include more than 120 collaborators worldwide covering MEMS and image sensors, Compound semiconductors, RF Electronics, Solid-state lighting, Displays, Software, Optoelectronics, Microfluidics & Medical, Advanced Packaging, Manufacturing, Power Electronics, Batteries & Energy Management and Memory.

The “More than Moore” market research, technology and strategy consulting company Yole Développement, along with its partners System Plus Consulting, PISEO, KnowMade and Blumorpho, supports industrial companies, investors and R&D organizations worldwide to help them understand markets and follow technology trends to grow their business.

CONSULTING AND ANALYSIS
• Market data & research, marketing analysis
• Technology analysis
• Strategy consulting
• Reverse engineering & costing
• Patent analysis
• Design and characterization of innovative optical systems
• Financial services (due diligence, M&A with our partner)
More information on www.yole.fr

MEDIA & EVENTS
• i-Micronews.com website, application & related e-newsletter
• Communication & webcast services
• Events: TechDays, forums…
More information on www.i-micronews.com

REPORTS
• Market & technology reports
• Patent investigation and patent infringement risk analysis
• Structure, process and cost analysis and teardowns
• Cost simulation tool
More information on www.i-micronews.com/reports

CONTACTS
For more information about :
• Consulting & Financial Services: Jean-Christophe Eloy (eloy@yole.fr)
• Reports & Monitors: David Jourdan (jourdan@yole.fr) & Fayçal Khamassi (khamassi@yole.fr)
• Marketing & Communication: Camille Veyrier (veyrier@yole.fr)
• Public Relations: Sandrine Leroy (leroy@yole.fr)
1. SCOPE

Definitons: “Acceptance”: Action by which the Buyer accepts the terms and conditions of sale in its entirety. It is done by signing the purchase order which mentions “I hereby accept Yole Développement’s Terms and Conditions of Sale”.

“Buyer”: Any business user (i.e. any person acting in the course of its business activities, for its business needs) entering into the following general conditions to the exclusion of consumers acting in their personal interests.

“Contracting Parties” or “Parties”: The Seller on one hand and the Buyer on the other hand.

“Intellectual Property Rights” (“IPR”) means any rights held by the Seller in its Products, including any patents, trademarks, registered designs and models, database rights, inventions, commercial secrets and know-how, technical information, company or trading names and any other intellectual property rights or similar in any part of the world, notwithstanding the fact that they have been registered or not, or having any pending registration of one of the above mentioned rights.

“Products”: Depending on the purchase order, reports or monitors on MEMS, Imaging, SSL, Advanced Packaging, MedTech, Power Electronics and more, can be bought either on a unit basis or as a bundled offer (i.e. subscription for a period of 12 calendar months).

“Report”: Reports are established in PowerPoint and delivered in a PDF format with an additional Excel file. 30 min of Q&A session will also be given. The Buyer may also have access to these reports for a maximum of 2 months starting from the delivery date. The Buyer shall therefore not use the Product for purposes such as:

• display advertisements or public announcements;
• recordings and re-transmit it over any network (including any local area network);
• use it as a news bulletin, service bulletin, bulletin board or similar arrangement or public display;
• posting any Product to any other online service (including bulletin boards or the Internet);
• licensing, leasing, selling, offering for sale or assigning the Product.

2. PRICE, INVOICING AND PAYMENT

3. LIABILITIES

4. TERMINATION

5. FORCE MAJEURE

6. PROTECTION OF THE SELLER’S IPR

7. MISCELLANEOUS

8. GOVERNING LAW AND JURISDICTION

Definitions: “Acceptance”: Action by which the Buyer accepts the terms and conditions of sale in its entirety. It is done by signing the purchase order which mentions “I hereby accept Yole Développement’s Terms and Conditions of Sale”.

“Buyer”: Any business user (i.e. any person acting in the course of its business activities, for its business needs) entering into the following general conditions to the exclusion of consumers acting in their personal interests.

“Contracting Parties” or “Parties”: The Seller on one hand and the Buyer on the other hand.

“Intellectual Property Rights” (“IPR”) means any rights held by the Seller in its Products, including any patents, trademarks, registered designs and models, database rights, inventions, commercial secrets and know-how, technical information, company or trading names and any other intellectual property rights or similar in any part of the world, notwithstanding the fact that they have been registered or not, or having any pending registration of one of the above mentioned rights.

“Products”: Depending on the purchase order, reports or monitors on MEMS, Imaging, SSL, Advanced Packaging, MedTech, Power Electronics and more, can be bought either on a unit basis or as a bundled offer (i.e. subscription for a period of 12 calendar months).

“Report”: Reports are established in PowerPoint and delivered in a PDF format with an additional Excel file. 30 min of Q&A session will also be given. The Buyer may also have access to these reports for a maximum of 2 months starting from the delivery date. The Buyer shall therefore not use the Product for purposes such as:

• display advertisements or public announcements;
• recordings and re-transmit it over any network (including any local area network);
• use it as a news bulletin, service bulletin, bulletin board or similar arrangement or public display;
• posting any Product to any other online service (including bulletin boards or the Internet);
• licensing, leasing, selling, offering for sale or assigning the Product.