Goodix Under-Display Optical Fingerprint

Latest cost-optimized optical fingerprint sensor in the Huawei P30 Pro smartphone.

SP19506 - IMAGING report by Sylvain HALLEREAU
Laboratory Analysis by Nicolas RADUFE
October 2019 – SAMPLE
Table of Contents

Overview / Introduction 4
 o Executive Summary
 o Reverse Costing Methodology

Company Profile 8
 o Goodix

Physical Analysis 11
 o Summary of the Physical Analysis
 o Huawei P30 Pro Fingerprint Scanner disassembly 14
 ✓ Optical Fingerprint Removal
 o Goodix Package Assembly 19
 ✓ Optical Fingerprint Views
 ✓ Optical Fingerprint Cross-Section
 o Sensor Die 35
 ✓ Sensor Die View & Dimensions
 ✓ Sensor Delaying & main Blocs
 ✓ Sensor Die Process
 ✓ Sensor Die Cross-Section
 ✓ Sensor Die Process Characteristic
 o Interface Component 54
 ✓ Flash Die
 ✓ PMIC Die
 ✓ MCU Die
 o Goodix 2017 vs Goodix 2019
 o Goodix vs Synaptics FS9500 fingerprint sensor 91

Sensor Manufacturing Process 98
 o Sensor Die Front-End Process & Fabrication Unit
 o Interface Component Front-End Process & Fabrication Unit
 o Final Test & Assembly unit

Cost Analysis 114
 o Summary of the cost analysis
 o Yields Explanation & Hypotheses
 o Interface Component 117
 ✓ Flash Die Cost
 ✓ PMIC Die Cost
 ✓ MCU Die Cost
 o Sensor Module 130
 ✓ Sensor Die Front-End Cost
 ✓ Sensor Die Probe Test, Thinning & Dicing
 ✓ Sensor Die Wafer Cost
 ✓ Sensor Die Cost
 ✓ Sensor Module Cost
 o Complete Module Fingerprint 137
 ✓ Assembled Components Cost
 ✓ Summary of the assembling
 ✓ Fingerprint Component Cost

Goodix TC2403 (Huawei P30 Pro) vs Synaptics FS9500 (Vivo X21 UD) 147

Selling Price
Feedbacks
Company services

©2019 by System Plus Consulting | SP19506 - Goodix Under-Display Optical Fingerprint 2
Executive Summary

This full reverse costing study has been conducted to provide insight on technology data, manufacturing cost and selling price of the Goodix Fingerprint under display find in the Huawei P30 Pro.

Synaptics launched the first optical fingerprint scanner on the market in 2018, with a lens-free solution. It was quickly followed by Goodix, also with a lens-free solution. This year, Goodix has launched its second generation optical fingerprint scanner, the first such product to use a lens.

The latest Goodix under-display optical fingerprint scanner has been found in Huawei P30 and P30 Pro, Vivo X23 and NEX S and other smartphones.

This scanner uses optical fingerprint technology that allows integration under the display. The new Goodix technology is radically different from those previously observed. Adding lenses reduces the pixel and CMOS image sensor die areas drastically, while keeping the same scanning area. The sensor die area and cost are much reduced.

Moreover, Goodix has developed a versatile interface component to reduce development time and cost. The sensor and interface component are assembled on an easily-customizable flex to adapt the fingerprint scanner to different smartphones.

The sensor has a resolution of 39,000 pixels, with a pixel density of 5,080ppi. The module's light source is provided by the OLED display. The sensor is connected by wire bonding to the flexible printed circuit and uses a CMOS process.

This reverse costing study provides insight into technological data, manufacturing cost, and selling price of the fingerprint sensor supplied by Goodix. It also compares it with the latest Synaptics fingerprint sensor in Vivo x21 and with the previous version of Goodix’s design.
Huawei P30 Pro Disassembly

Overview / Introduction

Company Profile

Physical Analysis
- Huawei P30 Pro Disassembly
 - Fingerprint Removal
- Goodix Package Assembly
 - Views & Dimensions
 - Cross-Section
- Sensor Die
 - Views & Dimensions
 - Delaying
 - Die Process
 - Die Cross-section
- Interface component
 - Flash Die
 - PMIC Die
 - MCU Die
- Goodix 2017 vs Goodix 2019
- Goodix vs Synaptics

Manufacturing Process Flow

Cost Analysis

Physical & Cost Comparison

Selling Price Analysis

Related Reports

About System Plus
Goodix Fingerprint – Dimensions

Overview / Introduction
Company Profile
Physical Analysis
- Huawei P30 Pro Disassembly
 - Fingerprint Removal
- Goodix Package Assembly
 - Views & Dimensions
 - Cross-Section
- Sensor Die
 - Views & Dimensions
 - Delaying
 - Die Process
 - Die Cross-section
- Interface component
 - Flash Die
 - PMIC Die
 - MCU Die
- Goodix 2017 vs Goodix 2019
- Goodix vs Synaptics

Manufacturing Process Flow
Cost Analysis
Physical & Cost Comparison
Selling Price Analysis
Related Reports
About System Plus

©2019 by System Plus Consulting | SP19506 – Goodix Under-Display Optical Fingerprint
Goodix Fingerprint – Cross-Section

Fingerprint sensor is assembled with dual side adhesive on a frame of the smartphone.
Fingerprint Sensor – Scanning Area
Goodix Fingerprint – Die Overview & Dimensions

Overview / Introduction

Company Profile

Physical Analysis
- Huawei P30 Pro Disassembly
 - Fingerprint Removal
- Goodix Package Assembly
 - Views & Dimensions
 - Cross-Section
- Sensor Die
 - Views & Dimensions
 - Delaying
 - Die Process
 - Die Cross-section
- Interface component
 - Flash Die
 - PMIC Die
 - MCU Die
- Goodix 2017 vs Goodix 2019
- Goodix vs Synaptics

Manufacturing Process Flow

Cost Analysis

Physical & Cost Comparison

Selling Price Analysis

Related Reports

About System Plus
Sensor Die Process – MicroLens
Interface Component - Package Opening

Overview / Introduction

Company Profile

Physical Analysis
- Huawei P30 Pro Disassembly
 - Fingerprint Removal
- Goodix Package Assembly
 - Views & Dimensions
 - Cross-Section
- Sensor Die
 - Views & Dimensions
 - Delayering
 - Die Process
 - Die Cross-section
- Interface component
 - Flash Die
 - PMIC Die
 - MCU Die
- Goodix 2017 vs Goodix 2019
- Goodix vs Synaptics

Manufacturing Process Flow

Cost Analysis

Physical & Cost Comparison

Selling Price Analysis

Related Reports

About System Plus
Flash Front-End Cost

<table>
<thead>
<tr>
<th>Wafer</th>
<th>Low Yield</th>
<th>Medium Yield</th>
<th>High Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>wafer (Si 300mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean Room Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumable Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labor Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yield losses Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front-End Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foundry Gross Margin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front-End Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pixel Array Front-End Cost

<table>
<thead>
<tr>
<th>Front-End</th>
<th>Low Yield</th>
<th>Medium Yield</th>
<th>High Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost</td>
<td>Breakdown</td>
<td>Cost</td>
</tr>
<tr>
<td>Raw wafer Cost (Si + p-epi)</td>
<td>$52.00</td>
<td>31.0%</td>
<td>$52.00</td>
</tr>
<tr>
<td>Clean Room Cost</td>
<td>$26.45</td>
<td>5.0%</td>
<td>$26.45</td>
</tr>
<tr>
<td>Equipment Cost</td>
<td>$340.96</td>
<td>30.0%</td>
<td>$340.96</td>
</tr>
<tr>
<td>Consumable Cost</td>
<td>$80.75</td>
<td>14.0%</td>
<td>$80.75</td>
</tr>
<tr>
<td>Labor Cost</td>
<td>$55.95</td>
<td>3.0%</td>
<td>$55.95</td>
</tr>
<tr>
<td>Yield Losses Cost</td>
<td>$25.38</td>
<td>2.0%</td>
<td>$25.38</td>
</tr>
<tr>
<td>Total Cost</td>
<td>$408.62</td>
<td>100.0%</td>
<td>$408.62</td>
</tr>
</tbody>
</table>

Pixel Array Front-End Cost Breakdown

The total cost for the sensor die ranges from $408 to $414 according to yield variations.

The largest portion of the manufacturing cost is due to the consumables at 10.0%.
Complete System Cost

<table>
<thead>
<tr>
<th>Fingerprint Module Manufacturing Cost</th>
<th>Low Yield</th>
<th>Medium Yield</th>
<th>High Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost</td>
<td>Breakdown</td>
<td>Cost</td>
</tr>
<tr>
<td>Fingerprint Image Sensor Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GM185 Component Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lens Barrel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filter & Housing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passives (Capacitors & Resistors)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connector 2x15 Positions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flex PCB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assembly Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yield Losses Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subcontractor Gross Margin 15%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Component Cost

The complete system cost ranges from $3.30 to $3.41 according to yield variations.

- The full per unit cost represents 24% of the component cost.
- The GM185 component cost represents 34% of the component cost.
- The Lens Barrel represents 32% of the component cost.
- The other components of the OCM and the final assembly cost represent 35% of the total cost.

We estimate a gross margin of 35% for the OCM, which results in a fingerprint module cost ranging from $3.30 to $3.41. This corresponds to the price to customers.
Related Reports

REVERSE COSTING ANALYSES - SYSTEM PLUS CONSULTING

PACKAGING

- Qualcomm 3D Sonic Sensor Fingerprint
- Synaptics’ Under-Display Fingerprint Scanner Inside the VIVO X21 UD Smartphone
- NEXT Biometric Fingerprint Sensor Flyer
- FPC’s FPC1268 in the Huawei Mate 9 Pro and Huawei P10 series
- Qualcomm® Snapdragon Sense™ ID 3D Fingerprint

MARKET AND TECHNOLOGY REPORTS - YOLE DÉVELOPPEMENT

ADVANCED PACKAGING

- Status of the MEMS Industry 2019
- Consumer Biometrics: Market and Technologies Trends 2018
- CMOS Image Sensor Service – Imaging Research
Synaptics launched the first optical fingerprint scanner on the market in 2018, with a lens-free solution. It was quickly followed by Goodix, also with a lens-free solution. This year, Goodix has launched its second generation optical fingerprint scanner, the first such product to use a lens.

The latest Goodix under-display optical fingerprint scanner has been found in Huawei P30 and P30 Pro, Vivo X23 and NEX S and other smartphones.

This scanner uses optical fingerprint technology that allows integration under the display. The new Goodix technology is radically different from those previously observed. Adding lenses reduces the pixel and CMOS image sensor die areas drastically, while keeping the same scanning area. The sensor die area and cost are much reduced.

Moreover, Goodix has developed a versatile interface component to reduce development time and cost. The sensor and interface component are assembled on an easily-customizable flex to adapt the fingerprint scanner to different smartphones.

The sensor has a resolution of 39,000 pixels, with a pixel density of 5,080ppi. The module's light source is provided by the OLED display. The sensor is connected by wire bonding to the flexible printed circuit and uses a CMOS process.

This reverse costing study provides insight into technological data, manufacturing cost, and selling price of the fingerprint sensor supplied by Goodix. It also compares it with the latest Synaptics fingerprint sensor in Vivo x21 and with the previous version of Goodix’s design.
TABLE OF CONTENTS

Introduction
- Executive Summary
- Reverse Costing Methodology

Company Profile: Goodix

Physical Analysis
- Summary of the Physical Analysis
- Huawei P30 Pro Fingerprint Scanner Disassembly
 - Optical fingerprint removal
- Goodix Package Assembly
 - Optical fingerprint views
 - Optical fingerprint cross-section
- Sensor Die
 - Sensor die view and dimensions
 - Sensor delayering, main blocks and process
 - Sensor die cross-section and process characteristics
- Interface Component
 - Flash die, PMIC die, MCU die
- Goodix 2017 vs Goodix 2019
- Goodix vs Synaptics FS9500 fingerprint sensor

Sensor Manufacturing Process
- Sensor Die Front-End Process and Fabrication Unit
- Interface Component Front-End Process and Fabrication Unit
- Final Test and Assembly Unit

Cost Analysis
- Summary of the Cost Analysis
- Yield Explanations and Hypotheses
- Interface Component
 - Flash die cost, PMIC die cost, MCU die cost
- Sensor Die
 - Sensor die front-end cost
 - Sensor die probe test, thinning and dicing
 - Sensor die wafer cost
 - Sensor die cost
- Complete Module Fingerprint
 - Assembled component costs
 - Summary of the assembly
 - Fingerprint component cost

Goodix TC2403 (Huawei P30 Pro) vs Synaptics FS9500 (Vivo X21 UD)

Selling Price

AUTHORS

Sylvain Hallereau is in charge of costing analyses for IC, power and MEMS. He has more than 10 years of experience in power device manufacturing cost analysis and has studied a wide range of technologies.

Nicolas Radufe is in charge of physical analysis at System Plus Consulting. He has a deep knowledge in chemical and physical analyses. He previously worked in microelectronics R&D for CEA/LETI in Grenoble and for STMicroelectronics in Crolles.

RELATED REPORTS

Qualcomm 3D Sonic Sensor Fingerprint
The second generation of biometric ultrasonic fingerprint authentication, found in the Samsung Galaxy S10 and S10 plus.
July 2019 - Price: EUR 3,990*

Synaptics’ Under-Display Fingerprint Scanner Inside the VIVO X21 UD Smartphone
Optical fingerprint technology allows integration behind the display.
July 2018 - EUR 3,490*

FPC1268 in the Huawei Mate 9 Pro and Huawei P10 series
The world’s first capacitive fingerprint successfully integrated under glass, in collaboration with TPK.
April 2017 - EUR 3,490*
COSTING TOOLS

Our analysis is performed with our costing tools IC Price+ and MEMS CoSim+.

System Plus Consulting offers powerful costing tools to evaluate any MEMS and System process or device, the production cost and selling price, from single chip to complex structures. All these tools are on sale under corporate license.

IC Price+

The tool performs the necessary cost simulation of any Integrated Circuit: ASICs, microcontrollers, memories, DSP, smartpower...

MEMS CoSim+

Cost simulation tool to evaluate the cost of any MEMS process or device.

WHAT IS A REVERSE COSTING®?

Reverse Costing® is the process of disassembling a device (or a system) in order to identify its technology and calculate its manufacturing cost, using in-house models and tools.

CONTACTS

Headquarters

22, bd Benoni Goullin
Nantes Biotech
44200 Nantes
France
+33 2 40 18 09 16
sales@systemplus.fr

Europe Sales Office

Lizzie LEVENEZ
Frankfurt am Main
Germany
+49 151 23 54 41 82
llevenez@systemplus.fr

America Sales Office

Steven LAFERRIERE
Western USA & Canada
+1 310-600-8267
laferriere@yole.fr

Chris YOUMAN
Eastern USA & Canada
+1 919-607-9839
chris.youman@yole.fr

Asia Sales Office

Takashi ONOZAWA
Japan & Rest of Asia
+81 80 4371 4887
onozawa@yole.fr

Mavis WANG
Greater China
+886 979 336 809
wang@yole.fr

Peter OK
Korea
+82 10 4089 0233
peter.ok@yole.fr

System Plus Consulting is specialized in the cost analysis of electronics from semiconductor devices to electronic systems. A complete range of services and costing tools to provide in-depth production cost studies and to estimate the objective selling price of a product is available.

Our services:

- **STRUCTURE & PROCESS ANALYSES**
- **TEARDOWNS**
- **CUSTOM ANALYSES**
- **COSTING SERVICES**
- **COSTING TOOLS**
- **TRAININGS**

www.systemplus.fr
sales@systemplus.fr
ORDER FORM

Please process my order for Goodix Under-Display Optical Fingerprint, Reverse Costing® – Structure, Process & Cost Report
Ref: SP19506

☐ Full Structure, Process & Cost Report : EUR 3,990*
☐ Annual Subscription offers possible from 3 reports, including this report as the first of the year. Contact us for more information.

SHIP TO
Name (Mr/Ms/Dr/Pr): ...
Job Title: ..
Company: ..
Address: ...
City: ... State:
Postcode/Zip: ..
Country: ..
VAT ID Number for EU members: ..
Tel: ...
Email: ...
Date: ..
Signature: ...

BILLING CONTACT
First Name : ...
Last Name: ..
Email: ...
Phone: ..

PAYMENT
By credit card:
Number: |__|__|__|__| |__|__|__|__| |__|__|__|__|
|__|__|__|__|
Expiration date: |__|__|/|__|__|
Card Verification Value: |__|__|__|

By bank transfer:
HSBC - CAE - Le Terminal -2 rue du Charron - 44800 St Herblain France
BIC code: CCFRFRPP

• In EUR
 Bank code : 30056 - Branch code : 00955 - Account : 09550003234
 IBAN: FR76 3005 6009 5509 5500 0323 439
• In USD
 Bank code : 30056 - Branch code : 00955 - Account : 09550003247
 IBAN: FR76 3005 6009 5509 5500 0324 797

*For price in dollars please use the day’s exchange rate
*All reports are delivered electronically in pdf format
*For French customer, add 20 % for VAT
*Our prices are subject to change. Please check our new releases and price changes on www.i-micronews.com. The present document is valid 6 months after its publishing date: October 2019

ANNUAL SUBSCRIPTIONS

Each year System Plus Consulting releases a comprehensive collection of new reverse engineering and costing analyses in various domains. You can choose to buy over 12 months a set of 3, 4, 5, 7, 10 or 15 Reverse Costing® reports.

Up to 47% discount!

More than 60 reports released each year on the following topics (considered for 2018):
• Power: GaN - IGBT - MOSFET - Si Diode - SiC
• Imaging: Camera - Spectrometer
• LED and Laser: UV LED – VCSEL - White/blue LED
• Packaging: 3D Packaging - Embedded - SIP - WLP
• Integrated Circuits: IPD – Memories – PMIC - SoC
• RF: FEM - Duplexer
• Systems: Automotive - Consumer - Energy - Telecom
Business Models Fields of Expertise

- Custom Analyses
 (>130 analyses per year)

- Reports
 (>60 reports per year)

- Costing Tools

- Trainings

Overview / Introduction
Company Profile
Physical Analysis
Manufacturing Process Flow
Cost Analysis
Physical & Cost Comparison
Selling Price Analysis
Related Reports

About System Plus
 - Company services
 - Contact