GaN-on-Sapphire HEMT Power IC by Power Integration

InnoSwitch3 Flyback Switcher Power IC in Anker PowerPort Atom PD 1

SP19480 - Power Semiconductor report by Amine ALLOUCHE
Laboratory Analysis by Nicolas RADUFE

July 2019 – SAMPLE
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview / Introduction</td>
<td>5</td>
</tr>
<tr>
<td>- Executive Summary</td>
<td></td>
</tr>
<tr>
<td>- Market</td>
<td></td>
</tr>
<tr>
<td>- Reverse Costing Methodology</td>
<td></td>
</tr>
<tr>
<td>Company Profile</td>
<td>13</td>
</tr>
<tr>
<td>- Power Integrations</td>
<td></td>
</tr>
<tr>
<td>Physical Analysis</td>
<td>17</td>
</tr>
<tr>
<td>- Summary of the Physical Analysis</td>
<td></td>
</tr>
<tr>
<td>- Power IC in Wall-Charger Anker PowerPort Atom PD 1</td>
<td></td>
</tr>
<tr>
<td>- Package analysis</td>
<td></td>
</tr>
<tr>
<td>- Package Opening</td>
<td></td>
</tr>
<tr>
<td>- Package Cross-Sections</td>
<td></td>
</tr>
<tr>
<td>- HEMT Die</td>
<td></td>
</tr>
<tr>
<td>- HEMT Die View & Dimensions</td>
<td></td>
</tr>
<tr>
<td>- HEMT Die Process</td>
<td></td>
</tr>
<tr>
<td>- HEMT Die Cross-Section</td>
<td></td>
</tr>
<tr>
<td>- HEMT Die Process Characteristic</td>
<td></td>
</tr>
<tr>
<td>- Primary & Secondary Control ICs</td>
<td></td>
</tr>
<tr>
<td>- IC Dies View & Dimensions</td>
<td></td>
</tr>
<tr>
<td>- IC Dies Process</td>
<td></td>
</tr>
<tr>
<td>- IC Dies Cross-Section</td>
<td></td>
</tr>
<tr>
<td>- IC Dies Process Characteristic</td>
<td></td>
</tr>
<tr>
<td>Manufacturing Process Flow</td>
<td>98</td>
</tr>
<tr>
<td>- HEMT Die Front-End Process</td>
<td></td>
</tr>
<tr>
<td>- HEMT Die Fabrication Unit</td>
<td></td>
</tr>
<tr>
<td>- IC Dies Front-End Process</td>
<td></td>
</tr>
<tr>
<td>- IC Dies Fabrication Unit</td>
<td></td>
</tr>
<tr>
<td>- Packaging Process Flow</td>
<td></td>
</tr>
<tr>
<td>Cost Analysis</td>
<td>120</td>
</tr>
<tr>
<td>- Summary of the cost analysis</td>
<td></td>
</tr>
<tr>
<td>- Yields Explanation & Hypotheses</td>
<td></td>
</tr>
<tr>
<td>- HEMT die</td>
<td></td>
</tr>
<tr>
<td>- HEMT Wafer Front-End Cost and Front-End Cost per process step.</td>
<td></td>
</tr>
<tr>
<td>- HEMT Back-End0 Cost: Die Probe Test, Thinning & Dicing</td>
<td></td>
</tr>
<tr>
<td>- HEMT Die Cost</td>
<td></td>
</tr>
<tr>
<td>- IC dies</td>
<td></td>
</tr>
<tr>
<td>- IC Front-End Cost</td>
<td></td>
</tr>
<tr>
<td>- IC Back-End0 Cost: Die Probe Test, Thinning & Dicing</td>
<td></td>
</tr>
<tr>
<td>- IC Die Cost</td>
<td></td>
</tr>
<tr>
<td>- Packaging Assembly Cost</td>
<td></td>
</tr>
<tr>
<td>- Component Cost</td>
<td></td>
</tr>
<tr>
<td>- Back-End: Final Test Cost</td>
<td></td>
</tr>
<tr>
<td>- Component Cost</td>
<td></td>
</tr>
<tr>
<td>Price Analysis</td>
<td>143</td>
</tr>
<tr>
<td>- Definition of prices</td>
<td></td>
</tr>
<tr>
<td>- Estimation of selling price</td>
<td></td>
</tr>
<tr>
<td>Comparison</td>
<td>146</td>
</tr>
<tr>
<td>- Technology and cost comparison between Power Integrations and Navitas GaN HEMT dies</td>
<td></td>
</tr>
<tr>
<td>Feedback</td>
<td>149</td>
</tr>
<tr>
<td>System Plus services</td>
<td>151</td>
</tr>
</tbody>
</table>

©2019 by System Plus Consulting | GaN-on-Sapphire HEMT Power IC by Power Integrations
Executive Summary

The long-expected first GaN-on-Sapphire die has been integrated into a commercially-available device!

In this report, System Plus Consulting unveils Power Integrations’ technical choices from the device design up to the packaging.

The first GaN-on-Sapphire-based Power Integrated Circuit (IC) die has been found in the Wall-Charger PowerPort Atom PD1: A2017 from Anker. The die is co-packaged with three ICs constituting primary-side and secondary-side controllers in the SC1933C device.

To our great surprise, the power GaN HEMT was processed on a sapphire substrate which is a major breakthrough that we did not observe before in other power GaN HEMTs. The latter being generally processed on Silicon substrates.

In this report, System Plus Consulting presents a deep teardown analysis of the SC1933C. Detailed optical and Scanning Electron Microscope pictures and cross-sections with energy-dispersive X-ray analysis are included to reveal Power Integrations’ technical choices at the microscopic level of the IC and HEMT designs.

The report provides an estimation of the production costs of the ICs, the HEMT and the package as well as the estimated selling price of the component. Finally, the report includes a comparison with the GaN-on-silicon HEMT from Navitas. This comparison highlights the differences in GaN die designs and manufacturing costs.

A system-oriented analysis of the PowerPort Atom PD1: A2017 from Anker, can be found in our "GaN Chargers Comparison" report, which focuses on the impact of GaN die adoption in the latest wall charger designs and their performance.
GaN – Main Players Roadmap

<table>
<thead>
<tr>
<th>Year</th>
<th>1st Gen</th>
<th>2nd Gen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other companies are in R&D of GaN HEMT, but they are not included in this presentation.
Summary of the Physical Analysis

Package: (inSOP-24D)
- High creepage inSOP-24D Package.
- Dimensions: 10.9mm x 9.5mm x 1.6mm
- Number of Pins: xx pins
- Nb of dies: xx

- Dimension: xx mm²
- Electrical Connection:
- Placement in the package:

Die
- Dimension: xx mm²
- Electrical Connection:
- Placement in the package:
HEMT die Dimensions

- Die dimensions: \(xx \text{ mm}^2 (xxmm \times xxmm) \).
- The marking gives information about the mask set origin in xxx.
Die Process

- Pitch: \(xx \, \mu m \)
Die Cross-Section

- Die thickness: xx µm
- xx solder thickness: xx µm
Die Cross-Section – EDX Analysis: xxx

- The EDX analysis on the substrate xxx reveals the presence of a majoritary xxx (93.35%), proving a xxx of HEMT die.

<table>
<thead>
<tr>
<th>Element</th>
<th>P%</th>
<th>A%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xx</td>
<td>93.35</td>
<td>70.93</td>
</tr>
<tr>
<td>xx</td>
<td>2.11</td>
<td>2.73</td>
</tr>
</tbody>
</table>

Xxx thickness: xx µm

Die Cross-Section – SEM View
©2019 by System Plus Consulting
Die Cross-Section

- GaN: xx µm
- xx: xx µm
- Al: xx µm
- xx: xx µm
- xx: xx µm

Die Cross-Section – SEM View
©2019 by System Plus Consulting
Primary Side Controller IC “Die 1” – Delayering

IC Die – Optical View
©2019 by System Plus Consulting
Primary Side Controller IC “Die 1” – Delayering

- The process uses xx transistors.
- MOS transistor gate length: xx µm.
- We consider that the minimum dimension is xx µm.
Detailed Front-End Process – PowerCoSim+ Tool

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow
- HEMT Fab Unit
 - HEMT Process Flow
- ICs Fab Unit
 - ICs Process Flow
 - Component Packaging

Cost Analysis

Selling Price Analysis

Comparison

Related Reports

About System Plus
GaN Transistor - Process Flow (2/4)

xx for xx contact

- Xxx pattern and etching

SiN layer

- SiN deposition and patterning.

Xxx contact

- Xxx deposition and patterning.
Description of the Wafer Fabrication Unit – IC Die 1

- In our calculation, we simulate a production unit using 150mm wafers. IC manufacturing Process was simulated on ICPrice+ tool.

Estimated IC wafer fab unit:

- Name: xxx
- Wafer diameter: 150mm (6-inch)
- Capacity: xxx wafers / month
- Year of start: xxx
- Products: xxx
- Location: xxx

Excerpt from ICPrice+ tool
Secondary Side Controller IC “Die 4” – Front-End Summary

- The die area of the IC is xxx mm².
- The process is a xxx with xxx metal layers, xxx polysilicon layer with xxx.
- It is estimated that this process was introduced in xxx and requires xxx masking steps.

<table>
<thead>
<tr>
<th>Description</th>
<th>Name</th>
<th>Type</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC 4</td>
<td></td>
<td>Standard</td>
<td>(same as product)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Die characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>IC 4</td>
</tr>
<tr>
<td>Standard</td>
</tr>
<tr>
<td>(same as product)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Front-End description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
</tr>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Min. dimension</td>
</tr>
<tr>
<td>Start production</td>
</tr>
<tr>
<td>Si</td>
</tr>
<tr>
<td>Functions</td>
</tr>
<tr>
<td>Parameters</td>
</tr>
<tr>
<td>Device</td>
</tr>
<tr>
<td>Gate oxide nb</td>
</tr>
<tr>
<td>Polysilicon nb</td>
</tr>
<tr>
<td>Metal layers</td>
</tr>
<tr>
<td>Litho steps</td>
</tr>
</tbody>
</table>

Excerpt from ICPrice+ tool
GaN HEMT Wafer Front-End Cost per Process Step

<table>
<thead>
<tr>
<th>Operation name</th>
<th>Step Cost (USD/Wafer)</th>
<th>Breakdown</th>
</tr>
</thead>
</table>

Total 100%
Primary Side Controller IC “Die 1” – Unprobed Wafer Cost

- The wafer cost is estimated between $xx and $xx according to yield hypothesis.

- The main part of the wafer cost is due to the xx with xx% and xx with xx%.
The die cost is estimated between $xx and $xx according to yield variations.

- Silicon cost accounts for xx% of the cost.
- The probe test, back grinding and dicing represent xx% of the cost.
- The scrap cost (xx%) is the total of all the losses during the back-end process.
Estimated Selling Price

<table>
<thead>
<tr>
<th>Component Cost</th>
<th>Low Yield</th>
<th>Medium Yield</th>
<th>High Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer Gross Profit</td>
<td>Cost</td>
<td>Breakdown</td>
<td>Cost</td>
</tr>
<tr>
<td>Component selling price</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power Integrations</th>
<th>Gross Margin</th>
<th>51.6%</th>
</tr>
</thead>
</table>

- The component manufacturing cost ranges from $xx to $xx according to yield variations.

- The component selling price ranges from $xx to $xx according to yield variations.
Comparison between Power Integrations and Navitas GaN HEMT dies

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Transistor</th>
<th>Package Type</th>
<th>Year</th>
<th>Die Size (mm²)</th>
<th>Lithography masks</th>
<th>Metal layers</th>
<th>Pitch (µm)</th>
<th>Epitaxy (µm)</th>
<th>Wafer thickness (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Integrations</td>
<td>SC1933C</td>
<td>SOIC</td>
<td>2018</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
</tr>
<tr>
<td>Navitas</td>
<td>NV6115</td>
<td>QFN 6-pin</td>
<td>2018</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
</tr>
</tbody>
</table>

Note:
NV6115 component is a HEMT transistor with a driver interface. Detailed teardown of the Navitas NV6115 can be found in System Plus Consulting’s report “SP19464 - Navitas GaN HEMT 650V Family.”
Related Reports

REVERSE COSTING ANALYSES - SYSTEM PLUS CONSULTING

POWER SEMICONDUCTORS & COMPOUND
- GaN-Based Wall Charger Comparison 2019
- Navitas 650V GaNFast Power IC Family
- GaN-on-Silicon Transistor Comparison 2018
- Texas Instruments’ LMG5200 GaN Power Stage

MARKET AND TECHNOLOGY REPORTS - YOLE DÉVELOPPEMENT

POWER ELECTRONICS & COMPOUND SEMI
- Power GaN 2018: Epitaxy, Devices, Applications and Technology Trends
- Discrete Power Device Packaging: Materials Market and Technology Trends 2019
- Status of the Power Electronics Industry 2018
- Wireless Charging Technologies and Markets 2018
After long expectation, the first GaN-on-Sapphire die has been integrated in a commercially available device!

In this report, System Plus Consulting unveils Power Integrations’ technical choices; from the device design up to the packaging.

The first GaN on Sapphire based Power IC die has been found in the Wall-Charger PowerPort Atom PD1: A2017, from Anker. The die is co-packaged with three ICs constituting primary-side and secondary-side controllers, in the device SC1933C.

To our great surprise, the power GaN HEMT was processed on a sapphire substrate which is a major breakthrough that we did not observe before in other power GaN HEMTs. The latter being generally processed on Silicon substrates.

In this report, System Plus Consulting presents a deep teardown analysis of the SC1933C. Detailed optical and SEM pictures and cross-sections with EDX analysis are included to reveal Power Integrations’ technical choices till the microscopic level of the ICs and HEMT’s designs.

The report provides an estimation of the production costs of the ICs, the HEMT and the package as well as the estimated selling price of the component.

Finally, the report shows a comparison with the GaN-on-Si HEMT from Navitas. This comparison highlights the differences in GaN dies’ design and manufacturing costs.

A system-oriented analysis of the PowerPort Atom PD1: A2017 from Anker, can be found in our report "GaN Chargers Comparison"; a report which focus on the impact of the GaN dies adoption in the latest wall chargers design and performances.

COMPLETE TEARDOWN WITH

- Detailed optical and SEM photos
- Precise measurements
- Materials EDX analysis
- Supply chain evaluation
- Manufacturing cost analysis
- Estimated selling price
- Technology and cost comparisons with GaN-on-Si HEMT from Navitas.

The unique device with GaN-on-Sapphire technology in the Anker’s PowerPort Atom PD 1 wall charger.
TABLE OF CONTENTS

Overview/Introduction
- Executive Summary
- Market
- Reverse Costing Methodology

Company Profile
- Power Integrations

Physical Analysis
- Summary of the Physical Analysis
- Power IC in Wall-Charger Anker PowerPort Atom PD 1
- Package Analysis
 - Package opening, package cross-sections
- HEMT Die
 - HEMT die view and dimensions
 - HEMT die process, cross-section, and process characteristics
- Primary and Secondary Control ICs
 - IC die views and dimensions
 - IC die processes, cross-sections, process characteristics

Manufacturing Process
- HEMT Die Front-End Process and Fabrication Unit
- IC Die Front-End Processes and Fabrication Units
- Packaging Process Flow

Cost Analysis
- Summary of the Cost Analysis
- Yield Explanations and Hypotheses
- HEMT Die
 - HEMT wafer front-end cost and front-end cost per process step.
 - HEMT back-end cost: Die probe test, thinning and dicing
 - HEMT die cost
- IC dies
 - IC front-end cost
 - IC back-end cost: Die probe test, thinning and dicing
 - IC die cost
- Packaging Assembly Cost
- Component Cost
 - Back-end: Final test cost
 - Component cost

Price Analysis
- Definition of Prices
- Estimation of Selling Price

Price Analysis
- Technology and Cost Comparison Between Power Integrations and Navitas GaN HEMT Dies

AUTHORS

Amine Allouche is part of System Plus Consulting’s Power Electronics and Compound Semiconductors team. Amine holds a Master’s degree focused on Micro and Nano-technologies for integrated Systems.

Véronique Le Troadec has joined System Plus Consulting as a laboratory engineer. She holds a Master degree in Micro-electronics from the University of Nantes.

RELATED REPORTS

GaN-Based Wall Charger Comparison 2019
The first wall-chargers based on GaN technology from RAVPower, Aukey, Made in Mind, and Anker.
July 2019 - EUR 6,490*

Navitas 650V GaNFast Power IC Family
The first GaN monolithic devices from Navitas for fast charging.
May 2019 - EUR 3,990*

GaN-on-Silicon Transistor Comparison 2018
Dive deep into the technology and cost of GaN-on-silicon HEMTs from EPC, Transphorm, GaN Systems, Panasonic and Texas Instruments.
April 2018 - EUR 4,990*
WHAT IS A REVERSE COSTING®?

Reverse Costing® is the process of disassembling a device (or a system) in order to identify its technology and calculate its manufacturing cost, using in-house models and tools.

IC Price+
The tool performs the necessary cost simulation of any Integrated Circuit: ASICs, microcontrollers, memories, DSP, smartpower...

Power CoSim+
Cost simulation tool to evaluate the cost of any Power Electronics process or device: from single chip to complex structures.

Our analysis is performed with our costing tools Power CoSim+ and IC Price+.

System Plus Consulting offers powerful costing tools to evaluate the production cost and selling price from single chip to complex structures.

ABOUT SYSTEM PLUS CONSULTING

System Plus Consulting is specialized in the cost analysis of electronics from semiconductor devices to electronic systems. A complete range of services and costing tools to provide in-depth production cost studies and to estimate the objective selling price of a product is available.

Our services:
- **STRUCTURE & PROCESS ANALYSES**
- **TEARDOWNS**
- **CUSTOM ANALYSES**
- **COSTING SERVICES**
- **COSTING TOOLS**
- **TRAININGS**

[Contact information provided]
ORDER FORM

Please process my order for “GaN-on-Sapphire HEMT Power IC by Power Integrations” Reverse Costing® – Structure, Process & Cost Report
Ref: SP19480

- Full Structure, Process & Cost Report: EUR 3,990*
- Annual Subscription offers possible from 3 reports, including this report as the first of the year. Contact us for more information.

SHIP TO
Name (Mr/Ms/Dr/Pr): ...
Job Title: ..
Company: ...
Address: ..
City: State: ...
Postcode/Zip: ...
Country: ..
VAT ID Number for EU members:
Tel: ..
Email: ..
Date: ...
Signature: ...

BILLING CONTACT
First Name: ..
Last Name: ...
Email: ..
Phone: ..

PAYMENT
By credit card:
Number: |__|__|__|__| |__|__|__|__| |__|__|__|__|
|__|__|__|__|
Expiration date: |__|__|/|__|__|
Card Verification Value: |__|__|__|

By bank transfer:
HSBC - CAE - Le Terminal -2 rue du Charron - 44800 St Herblain France
BIC code: CCFRFRPP
- In EUR
 Bank code: 30056 - Branch code: 00955 - Account: 09550003234
 IBAN: FR76 3005 6009 5509 5500 0323 439
- In USD
 Bank code: 30056 - Branch code: 00955 - Account: 09550003247
 IBAN: FR76 3005 6009 5509 5500 0324 797

*For price in dollars please use the day’s exchange rate
*All reports are delivered electronically in pdf format
*For French customer, add 20 % for VAT
*Our prices are subject to change. Please check our new releases and price changes on www.i-micronews.com. The present document is valid 6 months after its publishing date: July 2019

ANNUAL SUBSCRIPTIONS

Each year System Plus Consulting releases a comprehensive collection of new reverse engineering and costing analyses in various domains. You can choose to buy over 12 months a set of 3, 4, 5, 7, 10 or 15 Reverse Costing® reports.

Up to 47% discount!

More than 60 reports released each year on the following topics (considered for 2018):
- Power: GaN - IGBT - MOSFET - Si Diode - SiC
- Imaging: Camera - Spectrometer
- LED and Laser: UV LED – VCSEL - White/blue LED
- Packaging: 3D Packaging - Embedded - SIP - WLP
- Integrated Circuits: IPD – Memories – PMIC - SoC
- RF: FEM - Duplexer
- Systems: Automotive - Consumer - Energy - Telecom
Business Models a Fields of Expertise

- Custom Analyses (>130 analyses per year)
- Reports (>60 reports per year)
- Costing Tools
- Trainings

Overview / Introduction
Company Profile & Supply Chain
Physical Analysis
Manufacturing Process Flow
Cost Analysis
Selling Price Analysis
Comparison
Related Reports

About System Plus
- Company services
 - Contact
Headquarters
22 bd Benoni Goullin
44200 Nantes
FRANCE
+33 2 40 18 09 16
sales@systemplus.fr

Europe Sales Office
Lizzie LEVENEZ
Frankfurt am Main
GERMANY
+49 151 23 54 41 82
llevenez@systemplus.fr

America Sales Office
Steve LAFFERIERE
Phoenix, AZ
WESTERN US
T : +1 310 600 8267
lafferiere@yole.fr

Chris YOUMAN
EASTERN US & CANADA
T : +1 919 607 9839
chris.youman@yole.fr

Asia Sales Office
Takashi ONOZAWA
Tokyo
JAPAN
T : +81 80 4371 4887
onozawa@yole.fr

Mavis WANG
TAIWAN
T : +886 979 336 809
wang@yole.fr

www.systemplus.fr