Qualcomm 3D Sonic Sensor

Ultrasonic Fingerprint Sensor

SP19465 - MEMS report by Stéphane ELISABETH
LAB. Analysis by Veronique LE TROADEC

July 2019 – Sample
Table of Contents

Overview / Introduction 4
- Executive Summary
- Reverse Costing Methodology

Company Profile 8
- Qualcomm
- Samsung Galaxy S10 Plus Teardown

Market Analysis 18
- MEMS & Sensors Market Forecast

Physical Analysis 21
- Summary of the Physical Analysis
 - Display Integration
 - AMOLED Display Interaction
 - Display Cross-Section
- Module Extraction
- Module Assembly
 - Module Views & Disassembly
 - Module Cross-Section
- Sensor Die
 - Sensor Die View & Dimensions
 - Sensor Overview & main Blocs
 - Sensor Die Cross-Section
 - Sensor Die Process Characteristic
- ASIC Component
 - Package View & Dimensions
 - ASIC Die View & Dimensions
 - ASIC Delayering & main Blocs
 - ASIC Die Process
 - ASIC Die Cross-Section
 - ASIC Die Process Characteristic

Comparison with Qualcomm Sense ID 80
- Comparison with LeEco Le Max Fingerprint: Integration, Structure, Die, Process

Manufacturing Process 87
- Global Overview
- Ultrasonic Sensor Die Front-End Process & Fabrication Unit
- Sensor Front-End Process Flow
- ASIC Front-End Process Flow & Fabrication Unit

Cost Analysis 97
- Summary of the cost analysis
- Yields Explanation & Hypotheses
- Ultrasonic Sensor die
 - Sensor Front-End Cost
 - Sensor Die Probe Test & Dicing
 - Sensor Die Panel & Die Cost
- ASIC Component
 - ASIC Front-End Cost
 - ASIC Die Probe Test, Bumping & Dicing
 - ASIC Wafer & Die Cost
- Module Cost

Cost Comparison with Synaptics FS9500 114
- Comparison with Vivo X21UD Fingerprint: Integration, Sensor and ASIC, Cost

Selling price

Feedbacks

SystemPlus Consulting services 124
Executive Summary

- This full reverse costing study has been conducted to provide insight on technology data, manufacturing cost and selling price of the **Qualcomm 3D Sonic Sensor**.

- Either with the Exynos or the Qualcomm Chipset, the Samsung Galaxy S10 series is the first to feature the Ultrasonic Fingerprint Sensor directly under display. The sensor is located on the front of the device directly glued on the OLED material.

- This report focuses on analyzing the ultrasonic sensor and its integration with the display. The sensor is manufactured using LTPS (Low-Temperature Polycrystalline Silicon) technology on glass substrate. Using ferroelectric polymer, the sensor generated and processed ultrasonic waves on the substrate. The component includes also acoustic horn structure in order to focalize the ultrasonic waves.

- Since the last version of the device, Qualcomm managed to realize several changes at the TFT level reusing some mask layers. Also, the QBIC (Qualcomm Biometric Integrated Circuit) has evolved in term of circuit and power handling.

- This complete analysis of the Ultrasonic Fingerprint Module includes analyses of the Sensor die and the ASIC, along with a cost analysis and price estimation for the module. It also includes a physical and technical comparison with the previous version of the sensor in the LeEco LeMax Pro.
By using the Ultrasonic fingerprint sensor, Samsung can provide an almost full front display.
Fingerprint Supply Chain (Estimation)
MEMS & Sensors Market Forecast
Module Extraction

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis
- Module Extraction
 - Module Assembly
 - Views & Dimensions
 - Cross-Section
 - Sensor Die
 - Views & Dimensions
 - Overview
 - Die Process
 - Die Cross-section
 - ASIC Component
 - Views & Dimensions
 - Delayering
 - Die Process
 - Die Cross-section

Physical Comparison

Manufacturing Process Flow

Cost Analysis

Cost Comparison

Selling Price Analysis

Related Reports

About System Plus

Qualcomm 3D Sonic Sensor Assembly
©2019 by System Plus Consulting
Module Extraction – Display Cross-Section

Qualcomm 3D Sonic Sensor Assembly
©2019 by System Plus Consulting
Die Overview & Dimensions

- Die Area:
- Pad number:
 - Connected:
- Nb of PGDW per panel:
Die Overview

- Pixel Area:

- PMUT Area:

- Fill Factor:
Die Cross-Section

Die Sensor – Optical View
©2019 by System Plus Consulting

Die Sensor – Cross-Section – SEM View
©2019 by System Plus Consulting
Die View & Dimensions

- Die Area:
- Pad number:
The sensor was first integrated under a metal cover back in 2016.

In the Samsung galaxy S10, the sensor is for the first time integrated under display.
Ultrasonic Sensor Front-End Process

- **Sensor Front-End Process:**
 - Substrate:
 - Process type:
 - Metal layers:
 - Polysilicon layers:
 - Special Feature:
 - Lithography steps:

- **Test:**
 - Test type:

Drawing not at scale
Ultrasonic Sensor Process Flow (1/4)
Ultrasonic Sensor Front-End Cost

<table>
<thead>
<tr>
<th>Front-End</th>
<th>Low Yield</th>
<th>Medium Yield</th>
<th>High Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost</td>
<td>Breakdown</td>
<td>Cost</td>
</tr>
<tr>
<td>Raw Panel Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean Room Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumable Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labor Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yield losses Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sensor Front-End Cost

The **front-end cost** for the Sensor ranges from [] according to yield variations.

The largest portion of the manufacturing cost is due to the []
ASIC Wafer & Die Cost

<table>
<thead>
<tr>
<th>Low Yield</th>
<th>Medium Yield</th>
<th>High Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>Breakdown</td>
<td>Cost</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Front-End Cost
BE : Probe Test Cost
BE : Bumping Cost
BE : Dicing Cost

Total Wafer Cost

Nb of potential dies per wafer
Nb of good dies per wafer

ASIC Die Cost

By adding the probe test cost, the bumping and the dicing, the **ASIC wafer cost** ranges from [] according to yield variations.

The number of **good dies per wafer** is estimated to ranges from [] according to yield variations, which results in the **die cost** ranging from [].
Module Assembly Cost

<table>
<thead>
<tr>
<th>Component Cost</th>
<th>Low Yield</th>
<th></th>
<th></th>
<th>Medium Yield</th>
<th></th>
<th></th>
<th></th>
<th>High Yield</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Die cost</td>
<td>Cost</td>
<td>Breakdown</td>
<td>Cost</td>
<td>Breakdown</td>
<td>Cost</td>
<td>Breakdown</td>
<td>Cost</td>
<td>Breakdown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB Substrate cost</td>
<td></td>
</tr>
<tr>
<td>ASIC Component Cost</td>
<td></td>
</tr>
<tr>
<td>Other Components</td>
<td></td>
</tr>
<tr>
<td>Added Value</td>
<td></td>
</tr>
</tbody>
</table>

The component cost ranges from according to yield variations.

- The Sensor die represents of the component cost.
- The ASIC component represents of the component cost.
- The Assembly represents of the component cost.
- Other components and PCB substrate represent of the component cost.
Ultrasonic Fingerprint vs. Optical Fingerprint – Qualcomm vs. Synaptics

Component Cost Breakdown (Medium Yield)
- Flex substrate
- Sensor Module cost
- Final Assembly & Test cost
- Other components
- ASIC Component cost
- Final test & Calibration cost
- Others components
- Sensor
- PCB Substrate cost
- Added Value
- Yield losses cost
- Asic Component Cost

The complete system cost is estimated at...
- The Flex substrate cost represents...
- The ASIC Component cost represents...
- The Sensor Module cost represents...
- The other components of the BOM represent...
- The Final Assembly & Test cost represent...
Estimated Manufacturer Price

<table>
<thead>
<tr>
<th></th>
<th>Low Yield</th>
<th>Medium Yield</th>
<th>High Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qualcomm Gross Profit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Component price</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We estimate that Qualcomm realizes a **gross margin** on the Ultrasonic Sensor, which results in a final **component price** ranging from

This corresponds to the selling price for large volume to OEMs.
Related Reports

MEMS & SENSORS
- Synaptics’ Under-Display Fingerprint Scanner Inside the VIVO X21 UD Smartphone
- FPC’s FPC1268 in the Huawei Mate 9 Pro and Huawei P10 series
- Qualcomm® Snapdragon Sense™ ID 3D Fingerprint

MARKET AND TECHNOLOGY REPORTS - YOLE DÉVELOPPEMENT
- Status of the MEMS Industry 2019
- Consumer Biometrics: Market and Technologies Trends 2018
- Next-Generation Human Machine Interaction in Displays 2019
Back in 2016, LeEco, a former smartphone design company in China, was the first to integrate an ultrasonic sensor as a biometric fingerprint authentication device. This first integration was under a metal cover at the back of the screen. But the most interesting feature of such a sensor is its possible integration under the display without any additional components. With the integration in the latest Galaxy S10 series from Samsung, Qualcomm has proven that the biometric ultrasonic fingerprint under display is now ready for very high volume production and could compete with capacitive or optical sensors.

Either with the Exynos or the Qualcomm Chipset, the Samsung Galaxy S10 series is the first to feature the Ultrasonic Fingerprint Sensor directly under its display. The sensor is located on the front of the device directly glued onto the organic light emitting diode (OLED) material.

This report focuses on analyzing the ultrasonic sensor and its integration with the display. The sensor is manufactured using Low-Temperature Polycrystalline Silicon (LTPS) technology on a glass substrate. Using ferroelectric polymer, the sensor generates and processes ultrasonic waves on the substrate. The component also includes an acoustic horn structure in order to focus the ultrasonic waves.

Since the last version of the device, Qualcomm has made several changes at the thin-film transistor (TFT) level, reusing some mask layers. Also, the Qualcomm Biometric Integrated Circuit (QBIC) has evolved in terms of circuit and power handling, integrating more high voltage circuits and more on-chip memory.

This complete analysis of the Ultrasonic Fingerprint Module includes analyses of the sensor die and the Application Specific Integration Circuits (ASICs), along with a cost analysis and price estimation for the module. It also includes a physical and technical comparison with the previous version of the sensor in the LeEco LeMax Pro and with the Synaptics’ FS9500 optical fingerprint sensor. Finally, a cost comparison is included with the Synaptics sensor.

Title: Qualcomm 3D Sonic Sensor Fingerprint

Pages: 127

Date: July 2019

Format: PDF & Excel file

Price: EUR 3,990

COMPLETE TEARDOWN WITH

- Detailed photos
- Precise measurements
- Materials analysis
- Manufacturing process flow
- Supply chain evaluation
- Manufacturing cost analysis
- Selling price estimation
- Comparison with previous version of the fingerprint sensor in the Le Max Pro from LeEco
- Comparison between ultrasonic and optical under display fingerprint
TABLE OF CONTENTS

Overview/Introduction
- Qualcomm Company Profile and Ultrasonic Technology
- Samsung Galaxy S10 Plus Teardown

Market Analysis
- Physical Analysis
 - Physical Analysis Methodology
 - Module Extraction
 - Display integration and cross-section
 - Module Assembly
 - View, disassembly and cross-section
 - Sensor Die
 - View, dimensions and marking
 - Die overview: Amplifier, power supply, row and column selection, transceivers
 - Cross-section: transistors, transceivers
 - Process characteristics
 - ASIC Component
 - Package and die: View, dimensions and marking
 - Die overview, delayering and main block ID
 - Die cross-section
 - Process characteristics

Physical Comparison with LeEco Le Max Pro’s Ultrasonic Sensor
- Integration, Structure, Die, Process

Manufacturing Process Flow
- Overview
- Ultrasonic Sensor Process and Fabrication Unit
- Ultrasonic Sensor Process Flow
- ASIC Front-End Process and Fabrication Unit

Cost Analysis
- Cost Analysis Overview
- The Main Steps Used in the Economic Analysis
- Yield Hypotheses
- Sensor Die Cost
 - Front-end cost
 - Back-end: Tests and dicing
 - Panel and die cost
- ASIC Die Cost
 - Front-end cost
 - Back-end: Tests and dicing
 - Wafer and die cost
- Module Cost

Cost Comparison with the Synaptics FS9500 Under Display Fingerprint

Estimated Price Analysis

AUTHORS

Dr. Stéphane Elisabeth has joined System Plus Consulting’s team in 2016. He has a deep knowledge of Materials characterizations and Electronics systems. He holds an Engineering Degree in Electronics and Numerical Technology, and a PhD in Materials for Microelectronics.

Véronique Le Troadec has joined System Plus Consulting as a laboratory engineer. She holds a Master degree in Micro-electronics from the University of Nantes.

RELATED REPORTS

Synaptics’ Under-Display Fingerprint Scanner Inside the VIVO X21 UD Smartphone
- Optical fingerprint technology allows integration behind the display.
 - July 2018 - EUR 3,490*

FPC1268 in the Huawei Mate 9 Pro and Huawei P10 series
- The world’s first capacitive fingerprint successfully integrated under glass, in collaboration with TPK.
 - April 2017 - EUR 3,490*

Qualcomm® Snapdragon Sense™ ID 3D Fingerprint
- The latest in cutting-edge biometric fingerprint authentication, in the LeMax Pro smartphone from LeEco.
 - August 2016 - EUR 3,290*
WHAT IS A REVERSE COSTING®?

Reverse Costing® is the process of disassembling a device (or a system) in order to identify its technology and calculate its manufacturing cost, using in-house models and tools.

CONTACTS

Headquarters
22, bd Benoni Goulin
Nantes Biotech
44200 Nantes
France
+33 2 40 18 09 16
sales@systemplus.fr

Europe Sales Office
Lizzie LEVENEZ
Frankfurt am Main
Germany
+49 151 23 54 41 82
llevenez@systemplus.fr

America Sales Office
Steven LAFFERIERE
Western USA & Canada
+1 310-600-8267
lafferiere@yole.fr

Chris YOUMAN
Eastern USA & Canada
+1 919-607-9839
chris.youman@yole.fr

Asia Sales Office
Takashi ONOZAWA
Japan & Rest of Asia
+81 3 4405 9204
onozawa@yole.fr

Mavis WANG
Greater China
+86 979 336 809
wang@yole.fr

System Plus Consulting is specialized in the cost analysis of electronics from semiconductor devices to electronic systems. A complete range of services and costing tools to provide in-depth production cost studies and to estimate the objective selling price of a product is available.

Our services:
• STRUCTURE & PROCESS ANALYSES
• TEARDOWNS
• CUSTOM ANALYSES
• COSTING SERVICES
• COSTING TOOLS
• TRAININGS

www.systemplus.fr
sales@systemplus.fr
ORDER FORM

Please process my order for “Qualcomm 3D Sonic Sensor Fingerprint”
Reverse Costing® – Structure, Process & Cost Report
Ref: SP19465

☐ Full Structure, Process & Cost Report : EUR 3,990*
☐ Annual Subscription offers possible from 3 reports, including this report as the first of the year. Contact us for more information.

SHIP TO

Name (Mr/Ms/Dr/Pr): ..
Job Title: ..
Company: ..
Address: ..
City: ... State:
Postcode/Zip: ...
Country: ...
VAT ID Number for EU members:
Tel: ...
Email: ..
Date: ...
Signature: ...

BILLING CONTACT

First Name : ...
Last Name: ...
Email: ..
Phone: ..

PAYMENT

By credit card:
Number: |__|__|__|__| |__|__|__|__| |__|__|__|__|
|__|__|__|__|
Expiration date: |__|__|/|__|__|
Card Verification Value: |__|__|__|

By bank transfer:
HSBC - CAE- Le Terminal -2 rue du Charron - 44800 St Herblain France
BIC code: CCFRFRPP
• In EUR
 Bank code : 30056 - Branch code : 00955 - Account : 09550003234
 IBAN: FR76 3005 6009 5509 5500 0323 439
• In USD
 Bank code : 30056 - Branch code : 00955 - Account : 09550003247
 IBAN: FR76 3005 6009 5509 5500 0324 797

RETURN ORDER BY:
FAX: +33 (0)472 83 01 83
MAIL: YOLE DEVELOPPEMENT
75 Cours Emile Zola
69100 Villeurbanne – France

*For price in dollars please use the day's exchange rate
*All reports are delivered electronically in pdf format
*For French customer, add 20 % for VAT
*Our prices are subject to change. Please check our new releases and price changes on www.i-micronews.com. The present document is valid 6 months after its publishing date: July 2019

ANNUAL SUBSCRIPTIONS

Each year System Plus Consulting releases a comprehensive collection of new reverse engineering and costing analyses in various domains. You can choose to buy over 12 months a set of 3, 4, 5, 7, 10 or 15 Reverse Costing® reports.

Up to 47% discount!

More than 60 reports released each year on the following topics (considered for 2018):
• Power: GaN - IGBT - MOSFET - Si Diode - SiC
• Imaging: Camera - Spectrometer
• LED and Laser: UV LED – VCSEL - White/blue LED
• Packaging: 3D Packaging - Embdedded - SIP - WLP
• Integrated Circuits: IPD – Memories – PMIC - SoC
• RF: FEM - Duplexer
• Systems: Automotive - Consumer - Energy - Telecom

Distributed by YOLE DEVELOPPEMENT
Business Models Fields of Expertise

Custom Analyses
(>130 analyses per year)

Reports
(>60 reports per year)

Costing Tools

Trainings

©2019 by System Plus Consulting - SP19465 – Qualcomm 3D Sonic Sensor
Contact

Headquarters
22 bd Benoni Goullin
44200 Nantes
FRANCE
+33 2 40 18 09 16
sales@systemplus.fr

Europe Sales Office
Lizzie LEVENEZ
Frankfurt am Main
Germany
+49 151 23 54 41 82
llevenez@systemplus.fr

Asia Sales Office
Takashi ONOZAWA
Tokyo
JAPAN
T : +81 804 371 4887
onoza@yole.fr

America Sales Office
Steve LAFFERIERE
Phoenix, AZ
Western US
T : +1 310 600 8267
lafferiere@yole.fr

Chris YOUMAN
Eastern US & Canada
T : +1 919 607 9839
chris.youman@yole.fr

Mavis WANG
Taiwan
T : +886 979 336 809
wang@yole.fr

www.systemplus.fr