Panasonic 3D ToF Depth Sensing Camera Module

Panasonic MN3906 Time-of-Flight Image sensor and Flood Illuminator in the Vivo Nex Dual Display

IMAGING report by Stéphane ELISABETH
Physical Analysis by Nicolas RADUFFE
May 2019 – Sample
Table of Contents

Overview / Introduction 4
 o Executive Summary
 o Reverse Costing Methodology
Company Profile 8
 o Panasonic
 o Vivo Nex Dual Display Edition Teardown
Market Analysis 20
 o Ecosystem & Forecast
Physical Analysis 25
 o Summary of the Physical Analysis 26
 o 3D Sensing System Assembly 28
 ✔ Module Views
 ✔ Module Opening
 ✔ 3D ToF System Cross-Section
 o Flood Illuminator 36
 ✔ Module View & Dimensions
 ✔ Module Cross-Section
 o NIR VCSEL Die 46
 ✔ Die View & Dimensions
 ✔ Die Process
 ✔ Die Cross-Section
 ✔ Die Process Characteristic
 o NIR ToF Image Sensor 62
 ✔ Module View & Dimensions
 ✔ Module Cross-Section
 o NIR ToF Image Sensor 73
 ✔ Die Overview & Dimensions
 ✔ Die Process
 ✔ Die Cross-Section
 ✔ Die Process Characteristic
Vivo vs. Oppo vs. Lenovo 100
Manufacturing Process 107
 o NIR ToF Image Sensor Die Front-End Process & Fabrication Unit
 o Flood Illuminator NIR VCSEL Process Flow & Fabrication Unit
 o Summary of the main parts
Cost Analysis 117
 o Summary of the cost analysis 118
 o Yields Explanation & Hypotheses 121
 o NIR Camera Module 122
 ✔ Pixel Array & Optical Front-End Cost
 ✔ NIR ToF Image Sensor Wafer & Die Cost
 o Flood Illuminator Module 128
 ✔ NIR VCSEL Front-End Cost
 ✔ NIR VCSEL Probe Test, Thinning & Dicing
 ✔ NIR VCSEL Die Wafer Cost
 ✔ Component Cost
 o 3D ToF Module 136
 ✔ Lens Module & Component Cost
Feedbacks 140
SystemPlus Consulting services 142

©2019 by System Plus Consulting | Panasonic 3D ToF Depth Sensing Camera Module
Executive Summary

This full reverse costing study has been conducted to provide insight on technology data, manufacturing cost and selling price of the Panasonic MN34906 and the Flood Illuminator found in the Vivo Nex Dual Display.

- This report is focused on the analysis of the 3D depth-sensing camera, comprising the near-infrared (NIR) ToF camera module, and the flood illuminator. Relying on Panasonic’s knowledge of Charge Coupled Device (CCD) image sensors, the MN34906 has the smallest known pixel size for any ToF image sensor made with a CCD process on the market. Indeed, with a very low number of metal layers, Panasonic was able to produce a very cost-efficient image sensor with enough resolution and accuracy for a consumer application. Coupled with a standard flood illuminator based on vertical cavity surface emitting laser (VCSEL), the system has a very small form factor GS approach.

- This report analyzes the complete 3D depth sensing camera, provided along with cost analysis and price estimation for the module. It also includes a physical and technical comparison with other 3D sensing systems, such as the Infineon/pmd ToF image sensor in the Lenovo Phab 2 Pro, and the Sony BSI ToF image sensor in the Oppo RX17 Pro. The comparison looks at system integration, the NIR camera module and the illuminator architecture.
Vivo Nex Dual Display Teardown

Overview / Introduction
Company Profile & Supply Chain
- Panasonic
- Vivo Nex Dual Display Teardown
Market Analysis
Physical Analysis
Physical Comparison
Manufacturing Process Flow
Cost Analysis
Related Reports
About System Plus

Vivo Nex Dual Display Front View
©2019 by System Plus Consulting

Vivo Nex Dual Display Rear View – Opened
©2019 by System Plus Consulting
Summary of the Physical Analysis

NIR Camera Module Assembly:
- [Details]

NIR ToF Image Sensor:
- Dimensions:
- FSI
- Optical Features:
- Wire bonding on Rigid PCB
- CCD Technology

NIR ToF Image Sensor Die:
- Process:
- Electrical Connection:
- Placement in the package

Flood Illuminator Module Assembly:
- [Details]

VCSEL Die:
- Process:
- Electrical Connection:
- Placement in the package
VCSEL Die Overview & Dimensions

- Die Area:
 - Pad number:
 - Wire bonding:
 - Material:
 - Diameter:
 - Emitting Array:
 - Emitter Number:
 - Cavity Area:
 - Cavity Diameter:
3D ToF Camera Module – Sensor Die Overview & Dimensions

- Die Area:
- Nb of PGDW per 1-inch wafer:
- Pad number:
 - Connected:
- Pixel Array:
- NIR ToF Image Sensor resolution:
 - Pixel Area:
 - Pixel Size:
Sensor Die – Die Delaying – Pixels
Sensor Die – Die Cross-Section – Photodiode

Figure 1. (a) Pixel structure that consists with P-type substrate, photodiode is not separated in deep region. (b) Pixel structure of SDP, photodiode is completely separated.

Table 1. Characteristics summary of stacked deep photodiode

<table>
<thead>
<tr>
<th></th>
<th>Conventional photodiode</th>
<th>Stacked deep photodiode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photodiode depth</td>
<td>4.7μm</td>
<td>10μm</td>
</tr>
<tr>
<td>QE (850nm)</td>
<td>16%</td>
<td>30%</td>
</tr>
<tr>
<td>MTF (850nm at Nyquist frequency)</td>
<td>40%</td>
<td>40%</td>
</tr>
<tr>
<td>Dark current 60 °C</td>
<td>17ele/sec</td>
<td>17ele/sec</td>
</tr>
<tr>
<td>Read out voltage</td>
<td>4.6V</td>
<td>4.7V</td>
</tr>
</tbody>
</table>

Source: H. TAKAHASHI et al., IEEE, 2015, Symposium On VLSI Tech.
Vivo vs. Oppo vs. Lenovo – NIR Camera Module

Overview

- **Company Profile & Supply Chain**
- **Market Analysis**
- **Physical Analysis**
- **Physical Comparison**
 - Vivo vs. Oppo vs. Lenovo
- **Manufacturing Process Flow**
- **Cost Analysis**
- **Related Reports**
- **About System Plus**

Table: Comparison of NIR Camera Modules

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lenses Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spacer Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOV (°)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module Height (mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filter thickness (µm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substrate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image Sensor Assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pixel Array Circuit Process Flow

- **n-type buried Layer**

Manufacturing Process Flow
- Global Overview
- NIR Sensor Die Front-End Process
- NIR Sensor Process Flow
- NIR Sensor Fabrication Unit
- NIR VCSEL Process Flow
- NIR VCSEL Fabrication Unit
NIR Camera Module – Pixel Array Front-End Cost

<table>
<thead>
<tr>
<th>Front-End</th>
<th>Low Yield</th>
<th>Medium Yield</th>
<th>High Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost</td>
<td>Breakdown</td>
<td>Cost</td>
</tr>
<tr>
<td>Raw wafer Cost (p-epi Si)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean Room Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumable Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labor Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yield losses Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pixel Array Front-End Cost

The **front-end cost** for the Pixel array Die ranges from **according to yield variations**.

The largest portion of the manufacturing cost is due to the **...**
Flood Illuminator – NIR VCSEL Front-End Cost

<table>
<thead>
<tr>
<th>Wafer (Epitaxy + Metal Layer)</th>
<th>Low Yield</th>
<th>Medium Yield</th>
<th>High Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost</td>
<td>Breakdown</td>
<td>Cost</td>
</tr>
<tr>
<td>wafer with epitaxy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean Room Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumable Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labor Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yield losses Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Front-End Cost

The **front-end cost** for the NIR VCSEL ranges from according to yield variations. The largest portion of the manufacturing cost is due to the...
Complete System Price

<table>
<thead>
<tr>
<th></th>
<th>Low Yield</th>
<th>Medium Yield</th>
<th>High Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D ToF Module Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross Profit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3D ToF Module Price</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Yield</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium Yield</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Yield</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3D System Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main Camera Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wide Angle Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This corresponds to the selling price for large volume to OEMs.
Related Reports

REVERSE COSTING ANALYSES - SYSTEM PLUS CONSULTING

IMAGING
- Sony’s 3D Time-of-Flight Depth Sensing Camera Module
- Huawei Mate 20 Pro’s 3D Depth-Sensing System
- Mobile Camera Module Comparison 2019
- Orbbec’s Front 3D Depth Sensing System in the Oppo Find X
- STMicroelectronics’ Near Infrared Camera Sensor in the Apple iPhone X
- Apple iPhone X – Infrared Dot Projector
- Lenovo Phab2Pro 3D ToF Camera

MARKET AND TECHNOLOGY REPORTS - YOLE DÉVELOPPEMENT

IMAGING
- 3D Imaging & Sensing 2019
- VCSELs - Technology, Industry and Market Trends
- Consumer Biometrics: Market and Technologies Trends 2019
- Status of the Camera Module Industry 2019 – Focus on Wafer Level Optics
- Status of the CMOS Image Sensor Industry 2018
Panasonic’s 3D Time-of-Flight Depth Sensing Camera Module

For 3D depth sensing, three approaches have been considered in consumer applications: active stereo vision (AS), structured light (SL) and Time-of-Flight (ToF) sensing. SL was developed by Apple, which brought it to the market for the first time in 2017. It’s based on a complex system requiring several components, including a Global Shutter (GS) image sensor and a dot projector. The latter has been considered difficult and expensive to make due to the precision required. The ToF approach could be less complex and less expensive. You just need a ToF image sensor and a flood illuminator to bring depth sensing to a system. In this field, only three known companies have solutions. In 2016, Infineon was the first to bring out its 3D ToF image sensor, developed with pmd, for the Google Tango Project. Today, Sony has the major share of the market with several design wins starting from low-end smartphones, such as the Oppo RX17 Pro in 2018, to high-end ones, such as the Samsung S10 5G and Huawei P30 Pro in 2019. This year, Panasonic has surprised the market with a new ToF image sensor in the Vivo Nex Dual Display.

This report is focused on the analysis of the 3D depth-sensing camera, comprising the near-infrared (NIR) ToF camera module, and the flood illuminator. Relying on Panasonic’s knowledge of Charge Coupled Device (CCD) image sensors, the MN34906 has the smallest known pixel size for any ToF image sensor made with a CCD process on the market. Indeed, with a very low number of metal layers, Panasonic was able to produce a very cost-efficient image sensor with enough resolution and accuracy for a consumer application. Coupled with a standard flood illuminator based on vertical cavity surface emitting laser (VCSEL), the system has a very small form factor GS approach.

This report analyzes the complete 3D depth sensing camera, provided along with cost analysis and price estimation for the module. It also includes a physical and technical comparison with other 3D sensing systems, such as the Infineon/pmd ToF image sensor in the Lenovo Phab 2 Pro, and the Sony BSI ToF image sensor in the Oppo RX17 Pro. The comparison looks at system integration, the NIR camera module and the illuminator architecture.
TABLE OF CONTENTS

Overview/Introduction
Panasonic Company Profile
Vivo Nex Dual Display – Teardown and Market Analysis
Physical Analysis
 • Physical Analysis Methodology
 • 3D Sensing System Disassembly and Cross-Section
 • NIR Camera ToF Sensor
 o View, dimensions and cross-section
 • NIR Camera ToF Sensor Die
 o View, dimensions, pixels, delayering and main block IDs
 o Process and cross-section
 • Flood Illuminator Module Disassembly and Cross-Section
 • NIR VCSEL Dies
 o View, and dimensions
 o Die processes and cross-sections
 • Physical Data Summary
Physical Comparison: Lenovo Phab2Pro and Oppo RX17 Pro
 • System Integration
 • NIR Camera Module and ToF Sensor
 • Flood Illuminator and VCSEL

Manufacturing Process Flow
 • Die Fabrication Unit: NIR Image Sensor, NIR VCSEL
 • NIR Image Sensor and VCSEL Process Flow

Cost Analysis
 • Cost Analysis Overview
 • Supply Chain Description and Yield Hypotheses
 • NIR Image Camera Module Cost
 o Front-end (FE), microlens and total FE cost
 o Wafer and die cost
 o Lens module and assembly cost
 • NIR Flood Illuminator Cost
 o Front-end (FE) cost
 o Front-end cost per process step
 o Wafer and die cost
 o Assembly cost

Estimated Price Analysis: NIR Camera Module, Flood Illuminator Module, and Optical Hub

AUTHORS

Dr. Stéphane Elisabeth has joined System Plus Consulting’s team in 2016. He has a deep knowledge of Materials characterizations and Electronics systems. He holds an Engineering Degree in Electronics and Numerical Technology, and a PhD in Materials for Microelectronics.

Nicolas Radufe is in charge of physical analysis at System Plus Consulting. He has a deep knowledge in chemical and physical analyses. He previously worked in microelectronics R&D for CEA/LETI in Grenoble and for STMicroelectronics in Crolles.

RELATED REPORTS

Sony’s 3D Time-of-Flight Depth Sensing Camera Module
Deep analysis of the Sony’s 3D ToF Sensor and the VCSEL in the Oppo RX17 Pro.
March 2019 - EUR 3,990*

Huawei Mate 20 Pro’s 3D Depth-Sensing System
The complete system includes a 3D camera, flood illuminator, and DOT projector featuring a DOE.
February 2019 - EUR 3,990*

Mobile Camera Module Comparison 2019
Physical analysis and cost comparison of seven leading flagship smartphone cameras: Apple, Samsung, Huawei, Xiaomi, Oppo and Vivo.
January 2019 - EUR 6,490*
WHAT IS A REVERSE COSTING®?

Reverse Costing® is the process of disassembling a device (or a system) in order to identify its technology and calculate its manufacturing cost, using in-house models and tools.

CONTACTS

Headquarters
22, bd Benoni Goullin
Nantes Biotech
44200 Nantes
France
+33 2 40 18 09 16
sales@systemplus.fr

Europe Sales Office
Lizzie LEVENEZ
Frankfurt am Main
Germany
+49 151 23 54 41 82
llevenez@systemplus.fr

America Sales Office
Steven LAFERRIERE
Western USA & Canada
+1 310-600-8267
lafriere@yole.fr

Chris YOUMAN
Eastern USA & Canada
+1 919-607-9839
chris.youman@yole.fr

Asia Sales Office
Takashi ONOZAWA
Japan & Rest of Asia
+81 3 4405 9204
onozawa@yole.fr

Mavis WANG
Greater China
+86 979 336 809
wang@yole.fr

Our analysis is performed with our costing tool LED CoSim+ and IC Price+.
System Plus Consulting offers powerful costing tools to evaluate the production cost and selling price from single chip to complex structures.

LED CoSim+
Process-based costing tool to design and evaluate the cost of any LED process flow.

IC Price+
The tool performs the necessary cost simulation of any Integrated Circuit: ASICs, microcontrollers, memories, DSP, smartpower…

ABOUT SYSTEM PLUS CONSULTING

System Plus Consulting is specialized in the cost analysis of electronics from semiconductor devices to electronic systems. A complete range of services and costing tools to provide in-depth production cost studies and to estimate the objective selling price of a product is available.

Our services:
- STRUCTURE & PROCESS ANALYSES
- TEARDOWNS
- CUSTOM ANALYSES
- COSTING SERVICES
- COSTING TOOLS
- TRAININGS

www.systemplus.fr
sales@systemplus.fr
ORDER FORM

Ref: SP19451

☐ Full Structure, Process & Cost Report : EUR 3,990*
☐ Annual Subscription offers possible from 3 reports, including this report as the first of the year. Contact us for more information.

SHIP TO

Name (Mr/Ms/Dr/Pr): ...
Job Title: ...
Company: ..
Address: ..
City: .. State: ..
Postcode/Zip: ...
Country: ...
VAT ID Number for EU members:
Tel: ..
Email: ...
Date: ..
Signature: ..

BILLING CONTACT

First Name : ..
Last Name: ..
Email: ...
Phone: ..

PAYMENT

By credit card:
Number: |__|__|__|__| |__|__|__|__| |__|__|__|__| |__|__|__|__|
Expiration date: |__|__|/|__|__|
Card Verification Value: |__|__|__|

By bank transfer:
HSBC - CAE- Le Terminal -2 rue du Charron - 44800 St Herblain France
BIC code: CCFRFRPP

• In EUR
 Bank code : 30056 - Branch code : 00955 - Account : 09550003234
 IBAN: FR76 3005 6009 5509 5500 0323 439
• In USD
 Bank code : 30056 - Branch code : 00955 - Account : 09550003247
 IBAN: FR76 3005 6009 5509 5500 0324 797

*For price in dollars please use the day’s exchange rate
*All reports are delivered electronically in pdf format
*For French customer, add 20 % for VAT
*Our prices are subject to change. Please check our new releases and price changes on www.i-micronews.com. The present document is valid 6 months after its publishing date: May 2019

ANNUAL SUBSCRIPTIONS

Each year System Plus Consulting releases a comprehensive collection of new reverse engineering and costing analyses in various domains. You can choose to buy over 12 months a set of 3, 4, 5, 7, 10 or 15 Reverse Costing® reports.

Up to 47% discount!

More than 60 reports released each year on the following topics (considered for 2018):

• Power: GaN - IGBT - MOSFET - Si Diode - SiC
• Imaging: Camera - Spectrometer
• LED and Laser: UV LED – VCSEL - White/blue LED
• Packaging: 3D Packaging - Embedded - SIP - WLP
• Integrated Circuits: IPD – Memories – PMIC - SoC
• RF: FEM - Duplexer
• Systems: Automotive - Consumer - Energy - Telecom

Return order by:
FAX: +33 (0)472 83 01 83
MAIL: YOLE DEVELOPPEMENT
75 Cours Emile Zola
69100 Villeurbanne – France

*For price in dollars please use the day’s exchange rate
*All reports are delivered electronically in pdf format
*For French customer, add 20 % for VAT
*Our prices are subject to change. Please check our new releases and price changes on www.i-micronews.com. The present document is valid 6 months after its publishing date: May 2019
SystemPlus Consulting SERVICES
Contact

Headquarters
22 bd Benoni Goullin
44200 Nantes
FRANCE
+33 2 40 18 09 16
sales@systemplus.fr

Europe Sales Office
Lizzie LEVENEZ
Frankfurt am Main
GERMANY
+49 151 23 54 41 82
llevenez@systemplus.fr

America Sales Office
Steve LAFERRIERE
Phoenix, AZ
WESTERN US
T : +1 310 600 8267
laferriere@yole.fr

Chris YOUMAN
EASTERN US & CANADA
T : +1 919 607 9839
chris.youman@yole.fr

Asia Sales Office
Takashi ONOZAWA
Tokyo
JAPAN
T : +81 804 371 4887
onozawa@yole.fr

Mavis WANG
TAIWAN
T :+886 979 336 809
wang@yole.fr

www.systemplus.fr