ams’ Direct ToF Proximity Sensor

First SPAD Time-of-Flight from ams in the Huawei Mate 20 Pro

IMAGING report by Stéphane ELISABETH
April 2019 – Sample
Table of Contents

Overview / Introduction
- Executive Summary 4
- Reverse Costing Methodology

Company Profile
- ams 8
 - 3D Depth Sensing market
 - 3D Depth Sensing Technology
 - Time-of-Flight Technology
 - D-ToF Architecture
 - Huawei Mate 20 Pro Teardown
 - D-ToF Proximity Sensor System Architecture

Physical Analysis
- Summary of the Physical Analysis 28
- Package Assembly 30
 - Module Views & Dimensions
 - Module Opening
 - Module Cross-Section: Adhesive, PCB, Lens, FoV
- VCSEL Die 43
 - VCSEL Die View & Dimensions
 - VCSEL Die Cross-Section
 - VCSEL Die Process Characteristic
- SPAD Detector Die 59
 - Die View & Dimensions
 - Die Overview & Active Area: SPADs, Breakdown Voltage Detection
 - Die Delayering & main Blocs
 - Die Process
 - Die Cross-Section: Filter, Metal Layers, SPADs
 - Die Process Characteristic

Comparison with STMicroelectronics Custom dToF
- Comparison with Apple iPhone 8 plus and X/Xr/Xs’ Proximity Sensor: Package, FoV, Optical Blocking Package, SPAD Detector & VCSEL, SPADs

Manufacturing Process
- Global Overview 102
- SPAD Sensor Die Front-End Process & Fabrication Unit
- Filter Front-End Process Flow
- VCSEL Die Front-End Process Flow & Fabrication Unit
- Final Test & Packaging Fabrication unit

Cost Analysis
- Summary of the cost analysis 116
- Yields Explanation & Hypotheses 119
- SPAD Sensor die 121
 - Sensor Die & Filter Front-End Cost
 - Sensor Die Probe Test, Thinning & Dicing
 - Sensor Die Wafer & Die Cost
- VCSEL Die 125
 - VCSEL Die Front-End Cost
 - VCSEL Front-End Cost per process steps
 - VCSEL Die Probe Test, Thinning & Dicing
 - VCSEL Wafer & Die Cost
- Component Cost 122
 - Packaging Cost
 - Back-End: Final Test
 - Component Cost

Selling price 134

Feedbacks 138

SystemPlus Consulting services 140

©2019 by System Plus Consulting | ams’ Direct Time-of-Flight Detection SPAD-Based Proximity Sensor 2
Executive Summary

This full reverse costing study has been conducted to provide insight on technology data, manufacturing cost and selling price of the ams' Proximity Sensor in the Huawei Mate 20 Pro.

In the Huawei Mate 20 Pro, the front optical hub is packaged in one metal enclosure featuring several cameras and sensors. The complete system features a red/green/blue (RGB) camera module, an ambient light sensor, a near-infrared (NIR) global shutter (GS) camera module, a flood illuminator, a proximity sensor and a dot projector.

This report focuses on analyzing the proximity sensor. Located in the front around the main speaker, the proximity sensor is contained in a Land Grid Array (LGA) package. The device is probably a custom version of the new TMF8701 component made specifically for Huawei, and is the first on the market from ams. The component includes a SPAD detector featuring a 15 µm-wide SPAD, with 128 pixel resolution, and a single Vertical Cavity Surface Emitting Laser (VCSEL). The structure uses innovative optical LGA packaging with polymer lenses produced using a transfer molding process.

This complete analysis of the proximity sensor includes detailed analyses of the SPAD detector and the VCSEL, along with a cost analysis and price estimation for the module. It also includes a physical and technical comparison with the custom proximity sensor from STMicroelectronics in the Apple iPhone 8 and iPhone X/XR/XS.
Huawei Mate 20 Pro Teardown

Overview / Introduction

Company Profile & Supply Chain
- ams
- 3D Sensing Market
- 3D Sensing Technology
 - Huawei Mate 20 Pro Teardown
- ams’ d-ToF Proximity Sensor

Physical Analysis

Physical Comparison

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Related Reports

About System Plus

Huawei Mate 20 Pro Front View – Sensing module
©2019 by System Plus Consulting

Huawei Mate 20 Pro Back View – Opening
©2019 by System Plus Consulting

©2019 by System Plus Consulting | ams’ Direct Time-of-Flight Detection SPAD-Based Proximity Sensor
d-ToF Proximity Sensor System Architecture

Features:
- HV process node
- Custom developed SPAD sensor
- on main sensor array
- TDC and histogram based distance detection
- Fully integrated power management
- Cortex M0 CPU
- Sub-ns pulse generating laser driver
- Multi-mesa VCSAP diode
Summary of the Physical Analysis

Module Assembly:
- Electronic components assembly
- Dimensions
- OLGA Package:
- Lens:
- VCSEL and SPAD Detector on OLGA Package
- Electrical Connections and support:

Sensor Die:
- Process:
 - Special Features:
 - Electrical Connection:
- Placement:

VCSEL Die:
- Process:
 - Electrical Connection:
 - Placement:
Package View & Dimensions

<table>
<thead>
<tr>
<th>Package</th>
<th>Dimensions</th>
<th>Pin Pitch</th>
</tr>
</thead>
</table>

Marking:

- **ACVSF**

Package Top View

©2019 by System Plus Consulting

Package Bottom View

©2019 by System Plus Consulting

Package Side View

©2019 by System Plus Consulting

Schematic View

©2019 by System Plus Consulting
Package Cross-Section

Package total thickness:
- LGA PCB thickness:
- SPAD Detector thickness (with adhesive):
- VCSEL Die thickness (with adhesive):
- Optical blocking Package thickness:

Package Cross-Section Plan
©2019 by System Plus Consulting

Package Cross-Section — SEM View
©2019 by System Plus Consulting

Overview / Introduction
Company Profile & Supply Chain
Physical Analysis
- Package Assembly
 - Views & Dimensions
 - Cross-Section
- VCSEL Die
 - Views & Dimensions
 - Die Cross-section
- SPAD Die
 - Views & Dimensions
 - Delayering
 - Die Process
 - Die Cross-section

Physical Comparison
Manufacturing Process Flow
Cost Analysis
Selling Price Analysis
Related Reports
About System Plus

©2019 by System Plus Consulting | ams' Direct-Time-of-Flight Detection SPAD-Based Proximity Sensor
SPAD Detector Die – Active Area

- An array is used for the reference.
- An array is used for the target.
- Resolution:
- SPAD Target array dimensions:
- SPAD dimensions:

SPAD Detector Die Top View without Filters – Optical View
An additional filter added on top of the SPAD detector area.
SPAD Detector Die – Die Cross-Section – SPADs

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis
- Package Assembly
 - Views & Dimensions
 - Cross-Section
- VCSEL Die
 - Views & Dimensions
 - Die Cross-section
- SPAD Die
 - Views & Dimensions
 - Delayering
 - Die Process
 - Die Cross-section

Physical Comparison

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Related Reports

About System Plus

©2019 by System Plus Consulting | ams' Direct Time-of-Flight Detection SPAD-Based Proximity Sensor
Comparison with STMicroelectronics Custom d-ToF – Package

<table>
<thead>
<tr>
<th>Component</th>
<th>Package</th>
<th>Pin Nb</th>
<th>Aperture Nb</th>
<th>Wire Bonding Nb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple iPhone 8 Plus D-ToF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apple iPhone X D-ToF & Flood Illuminator</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huawei Mate 20 Pro D-ToF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparison with STMicroelectronics Custom d-ToF – SPADs

<table>
<thead>
<tr>
<th>Component</th>
<th>SPAD Array Area</th>
<th>Resolution</th>
<th>0% Attenuation</th>
<th>90% Attenuation</th>
<th>99% Attenuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple iPhone 8 Plus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huawei Mate 20 Pro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Global Overview

SPAD Detector
- Transistors manufacturing
- Lithography steps
- Surface Micromachining manufacturing

VCSEL
- VCSEL diode manufacturing

Manufacturing Process Flow
- SPAD Die Front-End Process
 - SPAD Fabrication Unit
- VCSEL Die Front-End Process
 - VCSEL Fabrication Unit
 - Final Test & Assembly Unit

ToF Proximity Sensor Component
- Optical Blocking package with 2 aperture
- Molded Lens
- PCB Substrate
VCSEL Wafer Front-End process Flow (1/3)
SPAD Detector Front-End Cost

<table>
<thead>
<tr>
<th>Front-End</th>
<th>Low Yield</th>
<th>Medium Yield</th>
<th>High Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost</td>
<td>Breakdown</td>
<td>Cost</td>
</tr>
<tr>
<td>Raw wafer Cost (Si)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean Room Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumable Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labor Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yield losses Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASIC Front-End Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foundry Gross Profit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASIC Front-End Price</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The **front-end cost** for the SPAD Detector ranges from [value] according to yield variations.

The largest portion of the manufacturing cost is due to the [component].
VCSEL Wafer & Die Cost

By adding the probe test cost and the dicing, the VCSEL wafer cost ranges from [] according to yield variations.

The number of good dies per wafer is estimated to range from [] according to yield variations, which results in a die cost ranging from [].
Component Cost

<table>
<thead>
<tr>
<th>Component Cost</th>
<th>Low Yield</th>
<th>Medium Yield</th>
<th>High Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost</td>
<td>Breakdown</td>
<td>Cost</td>
</tr>
<tr>
<td>ASIC Die Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCSEL Die Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packaging Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final test & Calibration cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yield losses cost</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The component cost ranges from [] according to yield variations.

- The **SPAD Detector die** represents [] of the component cost.
- The **VCSEL die** represents [] of the component cost.
- The **package assembly** represents [] of the component cost.
- **Final test and yield losses** represent [] of the component cost.
Estimated Manufacturer Price

<table>
<thead>
<tr>
<th>Component cost</th>
<th>Cost</th>
<th>Breakdown</th>
<th>Cost</th>
<th>Breakdown</th>
<th>Cost</th>
<th>Breakdown</th>
</tr>
</thead>
<tbody>
<tr>
<td>ams Gross Profit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Component price</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We estimate that ams realizes a gross margin of ___ on the ToF Proximity Sensor, which results in a final component price ranging from ___

This corresponds to the selling price for large volume to OEMs.
Related Reports

PACKAGING

• VCSEL in Smartphone – Comparison 2019
• Sony’s 3D Time-of-Flight Depth Sensing Camera Module
• STMicroelectronics’ Time of Flight Proximity Sensor & Flood Illuminator in the Apple iPhone X
• ams’ Spectral Sensor Portfolio: the AS726X Series
• STMicroelectronics Time of Flight Proximity Sensor in the Apple iPhone 7 Plus

MARKET AND TECHNOLOGY REPORTS - YOLE DÉVELOPPEMENT

ADVANCED PACKAGING

• VCSELs – Technology, Industry and Market Trends 2018
• 3D Imaging & Sensing 2018
STMicroelectronics was the first company to provide Single Photon Avalanche Diode (SPAD) technology for proximity sensing. Back in 2016, Apple started to implement this technology for its high-end iPhone 7 Plus. At this time, the phone-making Original Equipment Manufacturers (OEMs) were looking for highly sensitive proximity sensors requiring low photon incidence to work. Several companies have followed this path and have developed their own SPAD technology. This year, ams started mass production of its proximity sensors based on SPAD technology and offer the solution to several customers. The very first customer is Huawei, with ams supplying a custom proximity sensor in the Huawei Mate 20 Pro. Following this, ams is expected to gain increasing market share with several design wins in other OEMs’ flagships this year.

In the Huawei Mate 20 Pro, the front optical hub is packaged in one metal enclosure featuring several cameras and sensors. The complete system features a red/green/blue (RGB) camera module, an ambient light sensor, a near-infrared (NIR) global shutter (GS) camera module, a flood illuminator, a proximity sensor and a dot projector.

This report focuses on analyzing the proximity sensor. Located in the front around the main speaker, the proximity sensor is contained in a Land Grid Array (LGA) package. The device is probably a custom version of the new TMF8701 component made specifically for Huawei, and is the first on the market from ams. The component includes a SPAD detector featuring a 15 µm-wide SPAD, with 128 pixel resolution, and a single Vertical Cavity Surface Emitting Laser (VCSEL). The structure uses innovative optical LGA packaging with polymer lenses produced using a transfer molding process.

This complete analysis of the proximity sensor includes detailed analyses of the SPAD detector and the VCSEL, along with a cost analysis and price estimation for the module. It also includes a physical and technical comparison with the custom proximity sensor from STMicroelectronics in the Apple iPhone 8 and iPhone X.

COMPLETE TEARDOWN WITH

- Detailed photos
- Precise measurements
- Materials analysis
- Manufacturing process flow
- Supply chain evaluation
- Manufacturing cost analysis
- Estimated sales price
- Comparison with STMicroelectronics’ d-ToF proximity sensor for the Apple iPhone 8 Plus and iPhone X
AMS’ DIRECT TIME-OF-FLIGHT DETECTION SPAD-BASED PROXIMITY SENSOR

TABLE OF CONTENTS

Overview /Introduction
ams Company Profile and Time of Flight Technology
Huawei Mate 20 Pro Teardown
Physical Analysis
 • Physical Analysis Methodology
 • Package
 o View and dimensions
 o Package opening and wire bonding process
 o Package cross-section: adhesives, PCB, lens, FOV
 • VCSEL Die
 o View and dimensions
 o Wire bonding, cavity
 o Cross-section
 o Process characteristics
 • ASIC Die
 o View, dimensions and marking
 o Die overview: filters, active area, SPAD technology
 o Die delayering, main blocks ID and process
 o Cross-section: filters, metal layers, SPADs
 o Process characteristics

Physical Comparison with STMicroelectronics’ Custom Proximity Sensors
 • Package, Functions, FOV, Optical Blocking Package, ASIC and VCSEL, SPADs

Manufacturing Process Flow
 • Overview
 • ASIC Front-End Process
 • VCSEL Front-End Process
 • ASIC Wafer Fabrication Unit
 • VCSEL Wafer Fabrication Unit
 • Packaging Process Flow
 • Final Assembly Unit

Cost Analysis
 • Cost Analysis Overview
 • The Main Steps Used in the Economic Analysis
 • Yield Hypotheses
 • ASIC and VCSEL Die Cost
 o Front-end cost
 o Back-end: tests and dicing
 o Wafer and die cost
 • Component
 o Packaging cost
 o Packaging cost per process steps
 o Component cost

Estimated Price Analysis

AUTHORS

Dr. Stéphane Elisabeth has joined System Plus Consulting’s team in 2016. He has a deep knowledge of Materials characterizations and Electronics systems. He holds an Engineering Degree in Electronics and Numerical Technology, and a PhD in Materials for Microelectronics.

Nicolas Radufe is in charge of physical analysis at System Plus Consulting. He has a deep knowledge in chemical and physical analyses. He previously worked in microelectronics R&D for CEA/LETI in Grenoble and for STMicroelectronics in Crolles.

RELATED REPORTS

Sony’s 3D Time-of-Flight Depth Sensing Camera Module
Deep analysis of the Sony’s 3D ToF Sensor and the VCSEL in the Oppo RX17 Pro. March 2019 - EUR 3,990*

STMicroelectronics’ Time of Flight Proximity Sensor & Flood Illuminator in the Apple iPhone X
A unique combination of STMicroelectronics’ latest proximity sensor, based on SPAD technology and a VCSEL illuminator...
January 2018 - EUR 3,490*

VCSEL in Smartphone – Comparison 2019
Physical analysis and cost comparison of ten leading flagship smartphone VCSEL dies from Apple, Huawei, Xiaomi, Oppo, Lenovo, and Intel. April 2019 - EUR 6,490*
COSTING TOOLS

Our analysis is performed with our costing tools LED CoSim+, IC Price+ and MEMS CoSim+.
System Plus Consulting offers powerful costing tools to evaluate the production cost and selling price from single chip to complex structures.

LED CoSim+
Process-based costing tool to design and evaluate the cost of any LED process flow.

MEMS CoSim+
Cost simulation tool to evaluate the cost of any MEMS process or device.

IC Price+
The tool performs the necessary cost simulation of any Integrated Circuit: ASICs, microcontrollers, memories, DSP, smartpower...

MEMS CoSim+
Cost simulation tool to evaluate the cost of any MEMS process or device.

Power CoSim+
Cost simulation tool to evaluate the cost of any Power process or device.

3D Package CoSim+
Cost simulation tool to evaluate the cost of any packaged process.

Display Price+
Cost simulation tool to evaluate the cost of any display.

PCB Price+
Cost simulation tool to evaluate the cost of any PCB.

SYSCost+
Cost simulation tool to evaluate the cost of any system.

WHAT IS A REVERSE COSTING®?
Reverse Costing® is the process of disassembling a device (or a system) in order to identify its technology and calculate its manufacturing cost, using in-house models and tools.

CONTACTS

Headquarters
22, bd Benoni Goulin
Nantes Biotech
44200 Nantes
France
+33 2 40 18 09 16
sales@systemplus.fr

Europe Sales Office
Lizzie LEVENEZ
Frankfurt am Main
Germany
+49 151 23 54 41 82
llevenez@systemplus.fr

America Sales Office
Steven LAFERRIERE
Western USA & Canada
+1 310-600-8267
laferriere@yole.fr

Asia Sales Office
Takashi ONOZAWA
Japan & Rest of Asia
+81 3 4405 9204
onozawa@yole.fr

Chris YOUMAN
Eastern USA & Canada
+1 919-607-9839
chris.youman@yole.fr

Mavis WANG
Greater China
+886 979 336 809
wang@yole.fr

ABOUT SYSTEM PLUS CONSULTING
System Plus Consulting is specialized in the cost analysis of electronics from semiconductor devices to electronic systems. A complete range of services and costing tools to provide in-depth production cost studies and to estimate the objective selling price of a product is available.

Our services:
- **STRUCTURE & PROCESS ANALYSES**
- **CUSTOM ANALYSES**
- **_COSTING SERVICES**
- **COSTING TOOLS**
- **TRAININGS**

www.systemplus.fr
sales@systemplus.fr
ORDER FORM

Ref: SP19456

☐ Full Structure, Process & Cost Report : EUR 3,990*
☐ Annual Subscription offers possible from 3 reports, including this report as the first of the year. Contact us for more information.

SHIP TO

Name (Mr/Ms/Dr/Pr): ..
Job Title: ..
Company: ...
Address: ...
City: .. State:
Postcode/Zip: ...
Country: ...
VAT ID Number for EU members: ..
Tel: ...
Email: ...
Date: ...
Signature: ..

BILLING CONTACT

First Name : ...
Last Name: ...
Email: ...
Phone: ...

PAYMENT

By credit card:
Number: |__|__|__|__| |__|__|__|__| |__|__|__|__|
|__|__|__|__|
Expiration date: |__|__|/|__|__|
Card Verification Value: |__|__|__|

By bank transfer:
HSBC - CAE- Le Terminal -2 rue du Charron - 44800 St Herblain France
BIC code: CCFRFRPP

• In EUR
Bank code : 30056 - Branch code : 00955 - Account : 09550003234
IBAN: FR76 3005 5509 5500 0323 439

• In USD
Bank code : 30056 - Branch code : 00955 - Account : 09550003247
IBAN: FR76 3005 5509 5500 0324 797

*For price in dollars please use the day’s exchange rate
*All reports are delivered electronically in pdf format
*For French customer, add 20 % for VAT
*Our prices are subject to change. Please check our new releases and price changes on www.i-micronews.com. The present document is valid 6 months after its publishing date: April 2019

ANNUAL SUBSCRIPTIONS

Each year System Plus Consulting releases a comprehensive collection of new reverse engineering and costing analyses in various domains. You can choose to buy over 12 months a set of 3, 4, 5, 7, 10 or 15 Reverse Costing® reports. Up to 47% discount!

More than 60 reports released each year on the following topics (considered for 2018):

• Power: GaN - IGBT - MOSFET - Si Diode - SiC
• Imaging: Camera - Spectrometer
• LED and Laser: UV LED – VCSEL - White/blue LED
• Packaging: 3D Packaging - Embedded - SIP - WLP
• Integrated Circuits: IPD – Memories – PMIC - SoC
• RF: FEM - Duplexer
• Systems: Automotive - Consumer - Energy - Telecom
SystemPlus Consulting SERVICES