Li-ion technology is a kind of universal battery technology. The parameters of various Li-ion chemistries can well satisfy most customer requirements for a large variety of applications including portable electronics, electric and hybrid electric vehicles (EV/HEV), and stationary battery energy storage. Demand for Li-ion batteries is ever-growing, driven especially by electric mobility (xEV) applications, and the market will reach $88 billion by 2025.

This report focuses on “Li-ion challengers”, i.e. the technologies with the potential to “challenge” Li-ion batteries in terms of performance, cost, etc. To this end, there is a relatively large variety of different battery technologies, some at the R&D stage and some already in commercial production. This report analyzes in detail the following technologies: sodium-sulfur (NAS), lithium-sulfur (Li-S), sodium-ion (Na-ion), magnesium-ion (Mg-ion), lithium-air (Li-air), zinc-air and flow batteries, and lithium-ion capacitors (LIC). The energy storage market for these technologies reached $121M in 2015. According to Yole’s estimates, the market value for Li-ion challengers will reach $357M by 2025, with a 2015 - 2025 CAGR of 11.4%.

The majority of demand for present Li-ion battery technology challengers will come via utility-size stationary battery energy storage. Emerging battery technologies will find applications first in niche market segments with special requirements, namely in terms of energy density and safety: unmanned aerial vehicles, defense, etc. Future Li-ion challengers (i.e. technologies currently at the R&D stage) must overcome formidable technology challenges in order to achieve better performance/cost than Li-ion batteries. In the short-term, lithium-sulfur technology is considered the best candidate to reach sufficient technology maturity for wider commercial deployment.

BEYOND LI-ION BATTERIES: PRESENT AND FUTURE LI-ION TECHNOLOGY CHALLENGERS

Market & Technology report - November 2016

Which technologies can surpass Li-ion batteries, and for which applications?

GOOD NEWS: BATTERY DEMAND IS GROWING SIGNIFICANTLY. WHAT IS THE BEACHHEAD FOR CHALLENGERS TO LI-ION BATTERY TECHNOLOGY?

Li-ion technology is a kind of universal battery technology. The parameters of various Li-ion chemistries can well satisfy most customer requirements for a large variety of applications including portable electronics, electric and hybrid electric vehicles (EV/HEV), and stationary battery energy storage. Demand for Li-ion batteries is ever-growing, driven especially by electric mobility (xEV) applications, and the market will reach $88 billion by 2025.

This report focuses on “Li-ion challengers”, i.e. the technologies with the potential to “challenge” Li-ion batteries in terms of performance, cost, etc.

To this end, there is a relatively large variety of different battery technologies, some at the R&D stage and some already in commercial production. This report analyzes in detail the following technologies: sodium-sulfur (NAS), lithium-sulfur (Li-S), sodium-ion (Na-ion), magnesium-ion (Mg-ion), lithium-air (Li-air), zinc-air and flow batteries, and lithium-ion capacitors (LIC). The energy storage market for these technologies reached $121M in 2015. According to Yole’s estimates, the market value for Li-ion challengers will reach $357M by 2025, with a 2015 - 2025 CAGR of 11.4%.

The majority of demand for present Li-ion battery technology challengers will come via utility-size stationary battery energy storage. Emerging battery technologies will find applications first in niche market segments with special requirements, namely in terms of energy density and safety: unmanned aerial vehicles, defense, etc.

Future Li-ion challengers (i.e. technologies currently at the R&D stage) must overcome formidable technology challenges in order to achieve better performance/cost than Li-ion batteries. In the short-term, lithium-sulfur technology is considered the best candidate to reach sufficient technology maturity for wider commercial deployment.

ACCESS THE MARKET VIA OPTIMIZED COMPANY STRATEGY AND BUSINESS MODELS

Lithium-ion battery cell supply is already well-consolidated. Three leading companies (Panasonic, LG Chem, and Samsung SDI) continue to cement their position as cell suppliers by building new production facilities and developing new supply partnerships with EV/HEV manufacturers. To oppose the established Li-ion industry, challengers pursue different strategies. The safest approach involves companies focusing on one specific technology part which can be applicable in different battery chemistries (i.e. stabilization of lithium-metal electrode).
Oxis Energy’s initial focus is on niche markets where high energy density is a priority (unmanned aerial vehicles, defense). The goal is to obtain the necessary income for funding further improvement of Oxis’ lithium-sulfur battery technology and achieve a cycle life that is satisfactory for other applications. EnSync Energy Systems (formerly ZBB Energy) has changed from a flow battery supplier to a micro-grid solution provider. Other companies are focused on partnerships with utility companies as a means of developing demonstration projects and gaining visibility + customer confidence before developing high-volume production capacities.

Most companies developing future battery technologies are not planning to produce batteries independently (considered too risky), and instead are looking for a big company interested in a partnership or a technology license.

The big Li-ion players’ positioning regarding Li-ion technology challengers could be affected by the arrival of new players from the EV/HEV industry. Indeed, novel battery technologies are a strong focus of automotive OEMs (i.e. Toyota) and Tier1 companies (i.e. Bosch).

OPPORTUNITIES: SEEKING HIGH ENERGY DENSITY, SAFETY, AND LOWER COST

So what are the “sweet spots” where Li-ion technology challengers can successfully compete with Li-ion? In this report, different Li-ion battery parameters are closely analyzed, and three key parameters are identified as the most important: energy density, cost, and safety.

Li-air batteries and lithium-sulfur batteries are best-positioned to leverage the potential for higher energy density (in Wh/kg), while magnesium-ion, sodium-ion, zinc-air, and flow-batteries have better potential for enhanced safety and lower costs.

At short-term, lithium-sulfur technology is best positioned to reach a high energy density of 300 Wh/kg in commercial cells. This is especially critical for certain niche applications, portable electronics, and e-mobility applications. Li-air has potential for even higher energy density because it uses a fundamentally different technique for energy storage. However, daunting technology challenges are associated with oxygen separation and battery design.

Battery safety is important, as shown in the past by the consequences of the “burning laptops” with SONY batteries, and recently-reported Samsung Galaxy Note 7 phone incidents. As such, Li-ion battery improvement and research of novel, safer battery technologies is high priority.

The current high cost for emerging technologies is not relevant to future costs when produced by automated high-volume processes, but it is crucial to demonstrate the compatibility of the developed process and cell design with an industrial automated manufacturing approach. Also, a higher price could be acceptable in some niche markets if the battery provides better performance and safety.
COMPANIES CITED IN THE REPORT (non exhaustive list)

TABLE OF CONTENTS (complete content on i-Micronews.com)

Executive summary 9

Advanced battery applications 32
 > Portable electronics
 > Electric mobility
 > Stationary battery energy storage

Lithium-ion battery market 66
 > Li-ion battery cell costs
 > 2015 - 2025 lithium-ion battery market for portable electronics, e-mobility, stationary storage and battery market (GWh/yr)

Li-ion battery technologies 75
 > Key messages
 > Battery cell components and materials used
 > Why focus on Li-ion batteries?
 > Characteristics of today's main battery technologies
 > Li-ion battery vs. other battery types
 > Li-ion battery chemistries
 > Energy density of different Li-ion battery chemistries
 > Which Li-ion battery type for which application?
 > C-rate: energy cell vs. power cell
 > Lithium polymer battery
 > Battery cell format: cylindrical, prismatic, and pouch
 > 20700 cylindrical cell format
 > From battery cell to battery system
 > Battery cell vs. battery module vs. battery pack
 > Battery pack vs. battery system
 > How ancillary components impact battery pack characteristics
 > What is the ideal approach today: a new cell or better ancillary devices?
 > Battery pack - a multicomponent, multidisciplinary system
 > Why is battery development driven by EV/HEV?
 > Battery sizes and applications
 > Li-ion battery history
 > Li-ion battery technology maturity for main applications

Analysis of the main factors for Li-ion battery challengers 102
 > Where is the “sweet spot” for new battery technologies?
 > What are the limitations/weak points of Li-ion batteries?
 > How can advanced batteries compete with lithium-ion technologies?
 > Main factors for Li-ion battery challengers
 > LIB incidents can result in severe human and financial consequences
 > How to make batteries safer?
 > Lower dependence on scarce material

Comparative analysis of present and future Li-ion challengers 134
 > 2015-2025 market for Li-ion technology challengers (MWh and $M)

Li-ion battery supply chain 153

Focus on solid-state batteries 164
 > Solid-state battery principle and battery structure
 > Solid-state battery: bulk battery vs. microbattery
 > Why solid-state battery?
 > Challenges of solid-state batteries
 > Toyota EV/HEV battery development roadmap - solid-state battery
 > Solid-state battery actors

Present Li-ion battery challengers 176
 > Sodium-sulfur battery principle
 > Advantages and drawbacks of sodium-sulfur batteries
 > Sodium-sulfur battery applications
 > Sodium-sulfur battery companies
 > NAS battery market potential

Flow batteries 191
 > Flow battery principle
 > Classification of flow batteries
 > Advantages and drawbacks of flow batteries
 > Flow battery applications
 > Flow battery products - energy capacity vs. power capacity
 > Flow battery players
 > Flow battery market potential

Aqueous Sodium-ion battery 207
 > Sodium-ion battery types
 > Advantages and drawbacks of aqueous sodium-ion batteries
 > Example of an aqueous sodium-ion battery - Aqion Energy’s battery
 > Applications for aqueous sodium-ion batteries
 > Aqueous sodium-ion battery players

Zinc-air battery 216
 > Zinc-air battery principle
 > Advantages and drawbacks of zinc-air batteries
 > Zinc hybrid cathode battery from EOS Energy, and Zinc-air battery from Fluidic Energy
 > Commercial batteries from EOS Energy, and their pricing
 > Zinc-air battery players

Lithium-ion capacitor 228
 > Lithium-ion capacitor principle
 > Why lithium-ion capacitor?
 > Main challenges for lithium-ion capacitor
 > Comparison of electric double-layer capacitor, Li-ion capacitor, and Li-ion battery

Future Li-ion challengers 247

Lithium-sulfur battery 250
 > Lithium-sulfur battery principle
 > Why lithium-sulfur batteries?
 > Main challenges for lithium-sulfur batteries
 > Lithium-sulfur battery applications
 > Overview of lithium-sulfur battery players
 > Li-S battery - market potential

Organic-electrolyte sodium-ion battery 266
 > Sodium-ion battery types
 > Advantages and drawbacks of organic-electrolyte sodium-ion batteries
 > Organic-electrolyte sodium-ion battery cell format

Magnesium battery 275
 > Magnesium battery principle and characteristics
 > Advantages and drawbacks of magnesium batteries
 > Magnesium battery electrolyte and cathode challenges
 > Magnesium battery applications
 > What is the real potential of magnesium batteries?
 > Magnesium battery players and their relationships

Lithium-air battery 284
 > Lithium-air battery principle
 > Why lithium-air batteries?
 > Main challenges of lithium-air batteries
 > Lithium-air battery players
 > Lithium-air battery applications

Conclusion 293

Appendix - Company profiles 298

OBJECTIVES OF THE REPORT

The objectives of the report are to:
 • Provide an overview of the advanced battery market covering the three main application segments: portable electronics, electric mobility, stationary energy storage
 • Illustrate the strong, consistently-growing market potential for battery players in the energy storage business
 • Offer deep insight into present Li-ion chemistries and their future applicative potential
 • Identify present and future advanced battery chemistries
 • Deliver an overview of Li-ion battery supply chains and the developers of current and future battery chemistries (Li-ion challengers). Provide company profiles for key companies
 • Furnish an overview of present Li-ion battery technology challengers, their advantages, challenges, main applications, and key developers/ suppliers
 • Show an overview of future Li-ion battery technology challengers, their advantages, challenges, main applications, and key developers
 • Explain the needs of the different battery markets and analyze the added-values brought by Li-ion battery challengers
 • Analyze the drivers and technology challenges for battery makers, and provide a market forecast for advanced battery chemistries

AUTHOR

Dr. Milan Rosina is a Senior Analyst for Energy Conversion & Emerging Materials at Yole Développement. Before joining Yole, he worked as a Research Scientist and a Project Manager in the fields of photovoltaics, microelectronics, and LED. Dr. Rosina has more than 15 years of scientific and industrial experience with prominent research institutions, an equipment maker, and a utility company. His expertise includes new equipment and process development, due diligence, technology, and market surveys in in the fields of renewable energies, batteries, and innovative materials and devices.
ORDER FORM

Beyond Li-ion Batteries: Present and Future Li-ion Technology Challengers

BILL TO

Name (Mr/Ms/Dr/Pr):
Job Title:
Company:
Address:
City:
State:
Postcode/Zip:
Country:
*VAT ID Number for EU members:
Tel:
Email:
Date:

PAYMENT

BY CREDIT CARD

☐ Visa ☐ Mastercard ☐ Amex

Name of the Card Holder:
Credit Card Number:
Card Verification Value (3 digits except AMEX: 4 digits):
Expiration date:

BY BANK TRANSFER

BANK INFO: HSBC, 1 place de la Bourse,
F-69002 Lyon, France,
Bank code: 30056, Branch code: 00170
Account No: 0170 200 1565 87,
SWIFT or BIC code: CCFRFRPP,
IBAN: FR76 3005 6001 7001 7020 0156 587

RETURN ORDER BY

• FAX: +33 (0)472 83 01 83
• MAIL: YOLE DÉVELOPPEMENT, Le Quartz,
 75 Cours Emile Zola, 69100 Villeurbanne/Lyon - France

SALES CONTACTS

• North America - Steve Laferriere: +13106 008 267
 laferriere@yole.fr
• Europe & RoW - Lizzie Levenez: + 49 15 123 544 182
 levenez@yole.fr
• Japan & Rest of Asia - Takashi Onozawa: +81 3 6869 6970
 onozawa@yole.fr
• Greater China - Mavis Wang: +886 979 336 809
 wang@yole.fr
• Specific inquiries: +33 472 830 180 – info@yole.fr
(1) Our Terms and Conditions of Sale are available at
www.yole.fr/Terms_and_Conditions_of_Sale.aspx
The present document is valid 24 months after its publishing date:
November 28, 2016

SHIPPING CONTACT

First Name: ___________________________ Last Name: ___________________________
Email: ___________________________ Phone: ___________________________

ABOUT YOLE DEVELOPPEMENT

Founded in 1998, Yole Développement has grown to become a group of companies providing marketing, technology and strategy consulting, media in addition to corporate finance services. With a strong focus on emerging applications using silicon and/or micro manufacturing (technology or process), Yole Développement group has expanded to include more than 50 associates worldwide covering MEMS, Compound Semiconductors, LED, Image Sensors, Optoelectronics, Microfluidics & Medical, Photovoltaics, Advanced Packaging, Manufacturing, Nanomaterials and Power Electronics. The group supports industrial companies, investors and R&D organizations worldwide to help them understand markets and follow technology trends to develop their business.

CONSULTING
• Market data & research, marketing analysis
• Technology analysis
• Reverse engineering & costing services
• Strategy consulting
• Patent analysis

FINANCIAL SERVICES
• Merger & Acquisition analysis
• Due diligence
• Fundraising
More information on Jean-Christophe Eloy (eloy@yole.fr)

REPORTS
• Collection of technology & market reports
• Manufacturing cost simulation tools
• Component reverse engineering & costing analysis
• Patent investigation
More information on www.i-micronews.com/reports

MEDIA & EVENTS
• i-Micronews.com, online disruptive technologies website
• @Micronews, weekly e-newsletter
• Communication & webcasts services
• Events: Yole Seminars, Market Briefings...
More information on www.i-micronews.com

CONTACTS
For more information about:
• Consulting Services: Jean-Christophe Eloy (eloy@yole.fr)
• Financial Services: Jean-Christophe Eloy (eloy@yole.fr)
• Report Business: Fayçal Khamassi (khamassi@yole.fr)
• Press relations: Sandrine Leroy (leroy@yole.fr)
Definitions: “Acceptance” : Action by which the Buyer accepts the terms and conditions of sale in their entirety. It is done by signing the purchase order which mentions “I hereby accept Yole’s Terms and Conditions of Sale”.

“Buyer”: Any business user (i.e. any person acting in the course of its business activities, for its business needs) entering into the following general conditions to the exclusion of consumers acting in their private interest.

“Contracting Parties” or “Parties”: The Seller on the one hand and the Buyer on the other hand.

“Intellectual Property Rights” (“IPR”) means any rights resulting from a patent, a trademark, a design, a plant variety, a computer program, a layout design of a integrated circuit, a mask work, a copyright, a geographical indication or a designation of origin, a topography of an integrated circuit, a model right or a Know-how.

1. SCOPE

1.1 The Contracting Parties undertake to observe the following general conditions, including analysis, market research and business development services.

1.2 These services, as well as the underlying technology trends.

1.3 Orders are deemed to be accepted only upon written acceptance by any duly authorized person representing the Buyer. For the purpose of these terms and conditions, the date of order, to be sent either by email or to the Buyer’s address. In the absence of any confirmation in writing, orders shall be deemed to have been accepted.

1.4 The Buyer accepts Yole’s Terms and Conditions of Sale”. This results in the acceptance by the Buyer of the conditions of sales by the Seller.

1.5 The person receiving the Products on behalf of the Buyer shall immediately verify the quality of the Products and their conformity to the order. Any claim for apparent defects or faults shall be made by the Buyer within 90 days from the date of the original delivery or receipt of the Product.

1.6 In the event that the Buyer cancels the order in whole or in part or postpones the date of delivery, the Seller shall indemnify the Buyer for any losses and damages, including, but not limited to, damages for loss of profits, business interruption and loss of goodwill arising from the Buyer’s inability to use the Seller’s website or the Products, or any information provided on the website, or in the Products; or the Buyer cancels the product or product-related services.

2. MAILING OF THE PRODUCTS

2.1 Products are shipped at: • by overnight delivery from the order for Products already released; or • within 15 month from the order for Products already released.

2.2 No return of Products shall be accepted without prior written authorization from the Seller.

2.3 The mailing of the Products will occur only upon payment by the Buyer in accordance with the conditions contained in article 3.

2.4 The mailing is operated through electronic means either by email or by printing on a hardcopy document and delivering by post. If the Product’s electronic delivery format is defective, the Seller undertakes to replace it at no charge to the Buyer provided that it is informed of the defective format within 90 days from the date of the original download or receipt of the Product.

3. PRICE, INVOICING AND PAYMENT

3.1 Prices are given in the orders corresponding to each Product sold on a unit basis or corresponding to annual subscriptions. They are exclusive of taxes. The prices may be reevaluated from time to time. The effective price is deemed to be one applicable at the time of the order.

3.2 Yole may offer a pre release discount for the companies willing to acquire the Products prior to the release date. In exchange to this uncertainty, the company will get a discount that can vary from 15% to 10%.

3.3 Payments due by the Buyer shall be sent by cheque payable to Yole Développement, credit card or by electronic transfer to the following account:

 HSBC, 1 place de la Bourse 69002 Lyon France
 Bank code: 30056
 Branch code: 00170
 Account n°: 0170 200 1565 87
 BIC: FRK7 3005 6001 7000 2015 387

To ensure payment is correct and the Buyer receives the right to request down payments from the Buyer. In this case, the need of down payments will be mentioned on the order.

3.4 Payment is due within 30 days from the Seller within 30 days from invoice date, except in the case of a particular written agreement. If the Buyer fails to pay within this time and fails to contact the Seller, the latter shall be entitled to invoice interest in arrears based on the annual rate Refi of the “BCE” + 7 points, in accordance with article L. 441-6 of the French Commercial Code (deposit, database, tool...) are delivered only after reception of the full payment.

3.5 In the event of termination of the contract, or of misconduct, during the contract, the Seller will have the right to invoice the Buyer for not using the Products as of the stage in progress, and to take legal action for damages.

4. LIABILITIES

4.1 The Buyer or any other individual or legal person acting on its behalf, being a business user buying the Products for its business activities, shall be solely responsible for choosing the Products and for the use and interpretations he makes of the documents it purchases, of the results he obtains, and of the advice and acts it deduces thereof.

4.2 The Seller shall only be liable for (i) direct and (ii) foreseeable pecuniary damage arising from the sale of the Products or arising from a material breach of this agreement.

4.3 In no event shall the Seller be liable for: a) damages of any kind, including without limitation, incidental or consequential damages (including, but not limited to, damages for loss of profit, business interruption and loss of program or data contained therein); b) any inability to use the Seller’s website or the Products, or any information provided on the website, or in the Products; c) any alteration, modification, corruption or destruction of any data, including personal data and/or business data, or any inaccuracy in the Product or interpretations thereof.

4.4 All the information contained in the Products has been obtained from sources believed to be reliable. The Seller does not warrant the accuracy, completeness adequacy or reliability of such information, which cannot be guaranteed to be free from errors.

4.5 All the Products delivered by the Seller shall be free from errors.

4.6 In the case where, after inspection, it is acknowledged that the Products delivered are not in conformity with the needs of the Buyer, the Seller undertakes to replace the defective products as far as the supplies allow and without indemnities or compensation of any kind for labor costs, delays, penalties, interest, damages, interest, interest and taxes, interest and penalties, or any other cost. The replacement is guaranteed for a maximum of two months starting from the delivery date. Any replacement is excluded for any event as set out in article 5.2.1.2.

4.7 The deadlines that the Seller is asked to state for the mailing of the Products are given for information only and are not guaranteed. The Seller can not be held liable for any damage or cancellations of the orders, except for non acceptable delays exceeding 4 months from the stated deadline, without information from the Seller. In such case only, the Buyer shall be entitled to ask for a reimbursement of its first down payment to the exclusion of any further damages.

4.8 The Seller does not make any warranties, express or implied, including, without limitation, those of saleability and fitness for a particular purpose, with respect to the Products. Although the Seller shall try to keep their informations up-to-date, the Seller cannot guarantee that any Product will be free from infection.

5. FORCE MAJEURE

5.1 The Seller shall not be liable for any delay in delivery performance or direct or indirect damages caused by acts of nature (fire, flood, accident, war, government intervention, embargoes, strikes, labor difficulties, equipment failure, late deliveries by suppliers or any other circumstances which are beyond the control, and not the fault of the Seller.

6. PROTECTION OF THE SELLER’S IPR

6.1 All the IPR attached to the Products are and remain the property of the Seller. The Buyer shall not use the Products for its own internal information purposes. In particular, the Buyer shall therefore not use the Product for purposes such as: a) Information storage and retrieval systems; b) Recordings and re-transmitters over any network (including and not limited to internet); c) Use in any timesharing, service bureau, bulletin board or similar arrangement or public display; d) Providing any Product or screen Products online (including bulletin boards or the Internet); e) Licensing, leasing, selling, offering for sale or assigning the Product or service.

6.2 The Buyer shall be solely responsible towards the Seller of all infringements of this obligation, whether this infringement comes from its own employees, acting in the name and on behalf of the Seller, or from third parties, who have sent the Products and shall personally take care of any related proceedings, and the Buyer shall bear related financial consequences of any nature.

6.3 The Buyer shall define within its company point of contact for the needs of the contract. This person will be the recipient of each new report in PDF format. This person also shall be responsible for reporting any violation, which the Products are not disseminated out of the company.

6.4 In the context of annual subscriptions, the person of contact shall decide who will receive the reports on the on-line solutions. The Buyer has sent the Products and shall personally take care of any related proceedings, and the Buyer shall bear related financial consequences of any nature.

6.5 In the event of a breach by one Party under these conditions or the order, the non-breaching Party may send a notification to the other by recorded delivery letter upon which, after a period of thirty (30) days following the sending of the problem, the non-breaching Party shall be entitled to terminate all the pending orders, without being liable for any compensation.

8. MISCELLANEOUS

8.1 All the provisions of these Terms and Conditions are for the benefit of, and are binding upon, the Seller and all its sub-suppliers, agents and agents. Each of them is entitled to assert and enforce those provisions against the Buyer. Any unauthorized use of these Terms and Conditions shall be given in writing. They shall be effective upon receipt by the other Party. The Seller may, from time to time, update these Terms and Conditions and the Buyer shall be deemed to have accepted the latest version of these terms and conditions provided they are communicated to him in due time.

9. GOVERNING LAW AND JURISDICTION

9.1 Any dispute arising out or related to these Terms and Conditions, or to their interpretation, shall be subject to the exclusive jurisdiction of the French Commercial Courts of Lyon, which shall have exclusive jurisdiction upon such issues.

9.2 French law shall govern the relation between the Buyer and the Seller, in accordance with these Terms and Conditions.