Sony’s 3D Time-of-Flight System

Sony IMX316 and Flood Illuminator in the Oppo RX 17 Pro

IMAGING report by Stéphane ELISABETH
March 2019 – Version 1
Table of Contents

Overview / Introduction
- Executive Summary
- Reverse Costing Methodology

Company Profile
- Sony
- Oppo RX 17 Pro Edition Teardown

Market Analysis
- Ecosystem & Forecast

Physical Analysis
- Summary of the Physical Analysis
- 3D Sensing System Assembly
 - Module Views
 - Module Opening
 - System Cross-Section
- NIR Camera Module
 - Module View & Dimensions
 - Module Cross-Section
- NIR ToF Sensor
 - Die Overview & Dimensions
 - Die Process
 - Die Cross-Section
 - Die Process Characteristic
- Flood Illuminator
 - Module View & Dimensions
 - Module Cross-Section
- NIR VCSEL Die
 - Die View & Dimensions
 - Die Process
 - Die Cross-Section
 - Die Process Characteristic

Oppo vs. Lenovo

Manufacturing Process
- NIR ToF Sensor Die Front-End Process & Fabrication Unit
- Flood Illuminator NIR VCSEL Process Flow & Fabrication Unit
- Summary of the main parts

Cost Analysis
- Summary of the cost analysis
- Yields Explanation & Hypotheses
- NIR Camera Module
 - Pixel Array, BSI & Optical Front-End Cost
 - NIR ToF Sensor Wafer & Die Cost
- Flood Illuminator Module
 - NIR VCSEL Front-End Cost
 - NIR VCSEL Probe Test, Thinning & Dicing
 - NIR VCSEL Die Wafer Cost
 - Component Cost
- 3D ToF Module
 - Lens Module & Component Cost

Feedbacks

SystemPlus Consulting services
Executive Summary

This full reverse costing study has been conducted to provide insight on technology data, manufacturing cost and selling price of the Sony IMX316 and the Flood Illuminator found in the Oppo RX 17 Pro.

- The rear optical hub packaged in one metal enclosure features several cameras and a flood illuminator. The complete system features a Telephoto and a Wide-angle Camera Module and a 3D Time of Flight Camera. The specify of the 3D Depth sensing camera is the addition of a NIR flood illuminator.

- This report will be focused on the analysis of the 3D depth sensing system. All components are standard that can be found on the market. That includes a BSI Time of Flight image sensor featuring 10 µm size pixels and resolution of 46 kilopixel developed by Sony Depth Sensing Solution and one vertical cavity surface emitting laser (VCSEL) for the flood illuminator coming from a major supplier. This the first Time of Flight imager found on the market featuring Backside Illumination technology commonly used by Sony coupled with Current Assisted Photonic Demodulation (CPAD) developed by Sony Depth Solution (formerly SoftKinetic).

- Along with the complete 3D depth sensing system, this report goes with cost analysis and price estimation for the system. It also includes a physical and technical comparison with another 3D sensing system from Lenovo in the Phab2Pro using first generation of the pmd/Infineon ToF Imager. The comparison looks at system integration, the NIR camera module and the Flood Illuminator architecture.
Summary of the Physical Analysis

NIR Camera Module Assembly:

NIR Camera Module:
- Dimensions:
- BSI sensor die:
- Optical features:

NIR ToF Sensor Die:
- Process:
- Electrical connections:

Flood Illuminator Module Assembly:

VCSEL Die:
- Process:
- Electrical connections:
- Placement in the package:
3D Depth Sensing Module Cross-Section
3D Depth Sensing Module – Sensor Die Overview & Dimensions

Die area:

Nb of PGDW per inch wafer:

Pad number:

Connected:

Pixel array:

Pixel area:

Pixel size:

NIR ToF sensor resolution:
Sensor Die – Die Cross-Section – Substrate

- Sensor die thickness: XX µm
VCSEL Die Overview & Dimensions
Oppo vs. Lenovo – NIR Camera Module

<table>
<thead>
<tr>
<th>Lenovo Phab2Pro (NIR Camera Module)</th>
<th>Oppo RX 17 Pro (NIR Camera Module)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lenses number</td>
<td></td>
</tr>
<tr>
<td>Spacer number</td>
<td></td>
</tr>
<tr>
<td>FOV (°)</td>
<td></td>
</tr>
<tr>
<td>Module height (mm)</td>
<td></td>
</tr>
<tr>
<td>Filter thickness (µm)</td>
<td></td>
</tr>
<tr>
<td>Substrate</td>
<td></td>
</tr>
<tr>
<td>ToF sensor assembly</td>
<td></td>
</tr>
</tbody>
</table>
Pixel Array & DSP Circuit Process Flow

Si Wafer

Gradient Implant(s)

Manufacturing Process Flow
- Global Overview
- NIR Sensor Die Front-End Process
- NIR Sensor Process Flow
- NIR Sensor Fabrication Unit
- NIR VCSEL Process Flow
- NIR VCSEL Fabrication Unit

Cost Analysis

Related Reports

About System Plus
NIR Camera Module – Pixel Array Front-End Cost

Overview

<table>
<thead>
<tr>
<th>Front-End</th>
<th>Low Yield</th>
<th>Medium Yield</th>
<th>High Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost</td>
<td>Breakdown</td>
<td>Cost</td>
</tr>
<tr>
<td>Raw wafer Cost (p-epi Si)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean Room Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumable Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labor Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yield losses Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pixel Array Front-End Cost

The **front-end cost** for the Pixel array ranges from [(low yield cost)](low yield cost) to [high yield cost] according to yield variations.

The largest portion of the manufacturing cost is due to the **[cost factor]**.
The component cost ranges from low yield to high yield according to yield variations.

- The sensor die represents X of the component cost.
- The module assembly represents Y of the component cost.
- The lens module represents Z of the component cost.
- The filter, housing and metal parts represents A of the component cost.
- The other part represents B of the component cost.
We estimate that Sunny Optical realizes a gross margin of [] on the 3D ToF Module. The gross margin results in a final component price ranging from [] for the 3D ToF Module, which results in a Tri-Cam cost ranging from [] to [].

This corresponds to the selling price for large volume to OEMs.
Related Reports

REVERSE COSTING ANALYSES - SYSTEM PLUS CONSULTING

IMAGING
- Huawei Mate 20 Pro’s 3D Depth-Sensing System
- Mantis Vision’s 3D Depth Sensing System in the Xiaomi Mi8 Explorer Edition
- Orbbec’s Front 3D Depth Sensing System in the Oppo Find X
- STMicroelectronics’ Near Infrared Camera Sensor in the Apple iPhone X
- Apple iPhone X – Infrared Dot Projector
- Lenovo Phab2Pro 3D ToF Camera

MARKET AND TECHNOLOGY REPORTS - YOLE DÉVELOPPEMENT

IMAGING
- Status of the Camera Module Industry 2019 – Focus on Wafer Level Optics
- Status of the CMOS Image Sensor Industry 2018
- 3D Imaging & Sensing 2019
- VCSELs - Technology, Industry and Market Trends
- Consumer Biometrics: Market and Technologies Trends 2019
Following its first introduction of a 3D structured light camera on the front of the Find X, last year, Oppo is now pioneering the use of 3D Time-of-Flight (ToF) in its Rx17 Pro. Lenovo did a similar integration on the rear of one of its products a few years ago, integrating a pmd/Infineon solution in a high-end phone. In doing this, Asus and Lenovo added an additional Near Infra-Red (NIR) Global Shutter (GS) camera, but Oppo doesn’t have such a dedicated NIR GS Camera. Instead, Oppo uses the latest generation of ToF camera technology from Sony Depthsensing Solutions, formerly known as SoftKinetic.

The rear optical hub is packaged in one metal enclosure and features several cameras and a flood illuminator. The complete system features a telephoto and wide-angle camera module and a 3D ToF camera. The distinguishing characteristic of the 3D depth sensing camera is the addition of a NIR flood illuminator.

This report focuses its analysis on the 3D depth sensing system. All components are standard and can be found on the market. That includes a BackSide Illumination (BSI) ToF image sensor featuring 10 µm x 10 µm size pixels and resolution of 46 kilopixel, developed by Sony Depthsensing Solutions. It also has one vertical cavity surface emitting laser (VCSEL) for the flood illuminator, coming from a major supplier. This is the first ToF imager found on the market featuring BSI technology, which is commonly used by Sony, coupled with Current Assisted Photonic Demodulation (CPAD) developed by Sony Depthsensing Solutions.

Along with the complete 3D depth sensing system, this report analyses the system’s cost and estimates its price. It also includes a physical and technical comparison with another 3D sensing system from Lenovo in the Phab2Pro, using the first generation pmd/Infineon ToF Imager. The comparison looks at system integration, the NIR camera module and the flood illuminator architecture.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Overview/Introduction</th>
<th>Manufacturing Process Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sony Company Profile</td>
<td>• Die Fabrication Unit : NIR Image Sensor, NIR VCSEL,</td>
</tr>
<tr>
<td></td>
<td>• NIR Image Sensor and VCSEL Process Flow</td>
</tr>
<tr>
<td>Oppo RX17 Pro – Teardown and Market Analysis</td>
<td>Cost Analysis</td>
</tr>
<tr>
<td>Physical Analysis</td>
<td>• Cost Analysis Overview</td>
</tr>
<tr>
<td></td>
<td>• Supply Chain Description and Yield Hypotheses</td>
</tr>
<tr>
<td>• Physical Analysis Methodology</td>
<td>• NIR Image Camera Module Cost</td>
</tr>
<tr>
<td>• 3D Sensing System Disassembly and Cross-Section</td>
<td>o Front-end (FE), microlens, BSI and total FE cost</td>
</tr>
<tr>
<td>• NIR Camera ToF Sensor</td>
<td>o Wafer and die cost</td>
</tr>
<tr>
<td>o View, dimensions, and cross-section</td>
<td>o Lens module and assembly cost</td>
</tr>
<tr>
<td>• NIR Camera ToF Sensor Die</td>
<td>• NIR Flood Illuminator Cost</td>
</tr>
<tr>
<td>o View, dimensions, pixels, delayering and main block IDs</td>
<td>o Front-End (FE) cost</td>
</tr>
<tr>
<td>• Process and cross-section</td>
<td>o FE cost per process step</td>
</tr>
<tr>
<td>• Flood Illuminator Module Disassembly and Cross-Section</td>
<td>o Wafer and die cost</td>
</tr>
<tr>
<td>• NIR VCSEL Dies</td>
<td>o Assembly cost</td>
</tr>
<tr>
<td>o View, and dimensions</td>
<td>• Estimated Price Analysis: NIR Camera Module, Flood</td>
</tr>
<tr>
<td>o Dies process and cross-section</td>
<td>Illuminator Module, and Optical Hub</td>
</tr>
</tbody>
</table>

Physical Comparison: Lenovo Phab2Pro

- System Integration
- NIR Camera Module and ToF Sensor
- Flood Illuminator and VCSEL

AUTHORS

Dr. Stéphane Elisabeth has joined System Plus Consulting’s team in 2016. He has a deep knowledge of Materials characterizations and Electronics systems. He holds an Engineering Degree in Electronics and Numerical Technology, and a PhD in Materials for Microelectronics.

Nicolas Radufe is in charge of physical analysis at System Plus Consulting. He has a deep knowledge in chemical and physical analyses. He previously worked in microelectronics R&D for CEA/LETI in Grenoble and for STMicroelectronics in Crolles.

RELATED REPORTS

Huawei Mate 20 Pro’s 3D Depth-Sensing System
The complete system includes a 3D camera, flood illuminator, and DOT projector featuring a DOE.
February 2019 - EUR 3,990*

Orbbec’s Front 3D Depth Sensing System in the Oppo Find X
The first introduction of Orbbec’s 3D front depth sensing system in a mobile application featuring a global shutter, a dot projector and a custom system-on-chip.
November 2018 - EUR 3,990*

Mantis Vision’s 3D Depth Sensing System in the Xiaomi Mi8 Explorer Edition
The first introduction of Mantis Vision’s technology into a mobile application, featuring coded structured light.
December 2018 - EUR 3,990*
WHAT IS A REVERSE COSTING®?

Reverse Costing® is the process of disassembling a device (or a system) in order to identify its technology and calculate its manufacturing cost, using in-house models and tools.

Our analysis is performed with our costing tools SYSCost+, LED CoSim+ and IC Price+.

System Plus Consulting offers powerful costing tools to evaluate the production cost and selling price from single chip to complex structures.

IC Price+
Performs the necessary cost simulation of any Integrated Circuit: ASICs, microcontrollers, DSP, memories, smartpower...

LED CoSim+
Process-based costing tool to design and evaluate the cost of any LED process flow.

SYSCost+
Provides all component costs estimation including PCB, housing and connectors, and a simulation of the assembly cost and test process at the board and system level.
Business Models Fields of Expertise

Custom Analyses
 (>130 analyses per year)

Reports
 (>40 reports per year)

Costing Tools

Trainings

Contact

Headquarters
22 bd Benoni Goullin
44200 Nantes
FRANCE
+33 2 40 18 09 16
sales@systemplus.fr

Europe Sales Office
Lizzie LEVENEZ
Frankfurt am Main
GERMANY
+49 151 23 54 41 82
llevenez@systemplus.fr

America Sales Office
Steve LAFERRIERE
Phoenix, AZ
WESTERN US
T : +1 310 600 8267
laferriere@yole.fr

Troy Blanchette
EASTERN US
T : +1 704 859 0456
troy.blanchette@yole.fr

Asia Sales Office
Takashi ONOZAWA
Tokyo
JAPAN
T : +81 804 371 4887
onozawa@yole.fr

Mavis WANG
TAIWAN
T : +886 979 336 809
wang@yole.fr

www.systemplus.fr