Wafer Bonding Comparison
Permanent Bonding – Physical analysis and Cost Overview
MEMS, Imaging, LED, Packaging report by Audrey LAHRACH
November 2018 – Sample
Table of Contents

Overview / Introduction 5
 - Executive Summary
 - Reverse Costing Methodology

Permanent Wafer Bonding Technology 9

Permanent Wafer Bonding Definition and Process Description 13
 - Without intermediate layer
 - Fusion Bonding
 - CMOS Image Sensor
 - MEMS Inertial Sensor
 - Cu-Cu/Oxide Hybrid Bonding
 - CMOS Image Sensor
 - Anodic Bonding
 - MEMS Pressure Sensor
 - With intermediate layer
 - Glass Frit
 - MEMS Pressure Sensor
 - MEMS Inertial Sensor
 - Adhesive Bonding
 - MEMS Micro-mirror
 - Eutectic Bonding
 - MEMS Inertial Sensor
 - Microbolometer
 - LED

Physical Comparison 140
 - Thermo-compression Bonding
 - MEMS RF
 - MEMS Inertial Sensor

Cost Comparison 164

Feedbacks 168

SystemPlus Consulting services 170
Executive Summary

This comparative review has been conducted to provide insights into the structures, processes and costs of the main permanent wafer bonding technologies.

Among these technologies, we have identified two main groups. One, bonding wafers without intermediate layers, includes fusion, copper-copper hybrid and anodic bonding approaches. The second group involves bonding wafers with intermediate layers using an insulator like a glass frit, or a metal in eutectic and thermocompression approaches. In this report, we show examples of each wafer bonding approach in different applications. We analyze and compare each wafer bonding process type to show the benefit in terms of cost and space used.

By switching from glass frit bonding to metal bonding thermo-compression, a manufacturer could reduce component area by up to 30%, reclaiming lost space around the active surface and cutting cost. However, some bonding technologies are currently used only in some market segments. For example, hybrid copper-copper bonding is only used in CIS and glass frit technology is found only in products in automotive and some consumer MEMS applications.

In the comparison, we have analyzed each component’s wafer bonding process, including component dimensions, cost and manufacturing approach. We provide an overview of technology costs and manufacturer choices by application and range. We offer buyers and device manufacturers a unique possibility of understanding permanent wafer bonding technology, evolution, and comparing process costs.
Wafer Bonding

- **Permanent Wafer Bonding:**
 - Wafer bonding consists of joining two wafers surfaces with or without an intermediary layer, depending on the bonding technology.
 - Direct bonding is the process of bonding without an intermediate layer:
 - Indirect bonding is the process of bonding with an intermediate layer:
Technology Description

Overview / Introduction
Wafer Bonding Technology
Wafer Bonding Definition and Process Description
Physical Comparison
Cost Comparison
Related Reports
About System Plus

Direct Bonding
Without intermediate layer

Indirect Bonding
With intermediate layer

Wafer Bonding Technologies

Fusion bonding/direct or molecular bonding
Cu-Cu/oxide hybrid bonding at RT
Anodic bonding

Insulating interlayer

Glass frit bonding
Adhesive bonding
Eutectic Bonding
Thermo-compression

Metal bonding
Fusion Bonding

- Without intermediate layer
 - Fusion bonding
 - Anodic bonding
- With intermediate layer
 - Insulating interlayer
 - Glass frit bonding
 - Adhesive bonding
- Metal Bonding
 - Cu-Cu/oxide hybrid bonding
 - Eutectic Bonding
 - Thermo-compression

Schematic of the fusion bonding process:

- Hot pressure plate
- Si wafer
Overview / Introduction

Wafer Bonding Technology

Wafer Bonding Definition and Process Description
- Without intermediate layer
 - Fusion bonding
 - Anodic bonding
- With intermediate layer
 - Insulating interlayer
 - Glass frit bonding
 - Adhesive bonding
- Metal Bonding
 - Cu-Cu/oxide hybrid bonding
 - Eutectic Bonding
 - Thermo-compression

Physical Comparison

Cost Comparison

Related Reports

About System Plus

mCube Accelerometer - Package Cross-Section

Package Cross-Section – SEM View

Fusion Bonding

Photo rotation (180°)

Fusion Bonding

mCube – Die Cross-Section – SEM View
mCube Accelerometer – Process Flow

• Front-End Process:
 o Substrate: x-inch (xxxmm) Silicon wafer
 o Process type: xxxxxxx
 o Metal layers: x (xxxx)
 o Special features: DRIE, fusion & xxxx bondings + TSV xxxxx in MEMS Cap
 o Lithography steps: xx
 o MEMS Area: xxxmm²
Wafer Bonding Technology

Wafer Bonding Definition and Process Description

- Without intermediate layer
 - Fusion bonding
 - Anodic bonding
- With intermediate layer
 - Insulating interlayer
 - Glass frit bonding
 - Adhesive bonding
 - Metal Bonding
 - Cu-Cu/oxide hybrid bonding
 - Eutectic Bonding
 - Thermo-compression

Physical Comparison

Cost Comparison

Related Reports

About System Plus
PHYSICAL COMPARISON
Glass frit bonding to Thermo-compression bonding

Overview / Introduction
Wafer Bonding Technology
Wafer Bonding Definition and Process Description
Physical Comparison
Cost Comparison
Related Reports
About System Plus

MEMS Opening

Accelerometer with Glass-Frit Sealing
©2018 by System Plus Consulting

Glass-Frit Sealing Cross section
©2018 by System Plus Consulting

Accelerometer with Gold Sealing
©2018 by System Plus Consulting

Au-Au Sealing Cross Section
©2018 by System Plus Consulting
Glass frit bonding to Eutectic bonding

Glass-Frit Sealing Cross section
©2018 by System Plus Consulting

AlGe Sealing Cross section
©2018 by System Plus Consulting

Overview / Introduction
Wafer Bonding Technology
Wafer Bonding Definition and Process Description
Physical Comparison
Cost Comparison
Related Reports
About System Plus

©2018 by System Plus Consulting | Wafer to Wafer Permanent Bonding Comparison 2018
C O S T
COMPARISON
Permanent Wafer Bonding Comparison

<table>
<thead>
<tr>
<th>Front-End</th>
<th>Fusion Bonding</th>
<th>Cu-Cu hybrid Bonding</th>
<th>Anodic Bonding</th>
<th>Glass Frit Bonding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>Breakdown</td>
<td>Cost</td>
<td>Breakdown</td>
<td>Cost</td>
</tr>
<tr>
<td>Clean Room Cost</td>
<td>Equipment Cost</td>
<td>Consumable Cost</td>
<td>Labor Cost</td>
<td>Wafer Bonding Cost</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Front-End</th>
<th>Adhesive Bonding</th>
<th>Eutectic Bonding</th>
<th>Thermo-compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>Breakdown</td>
<td>Cost</td>
<td>Breakdown</td>
</tr>
<tr>
<td>Clean Room Cost</td>
<td>Equipment Cost</td>
<td>Consumable Cost</td>
<td>Labor Cost</td>
</tr>
</tbody>
</table>

Cost Comparison

- **Clean Room Cost**
- **Equipment Cost**
- **Consumable Cost**
- **Labor Cost**
- **Wafer Bonding Cost**

Xxxx
Related Reports

REVERSE COSTING ANALYSES - SYSTEM PLUS CONSULTING

PACKAGING
- MEMS Packaging: Reverse Technology Review
- MEMS Pressure Sensor Comparison 2018

MARKET AND TECHNOLOGY REPORTS - YOLE DÉVELOPPEMENT

ADVANCED PACKAGING
- Bonding and Lithography Equipment Market for More than Moore Devices
- Status of the MEMS Industry 2018
- Equipment and Materials for 3D TSV Applications 2017
- Status of the CMOS Image Sensor Industry 2018
- MEMS Packaging 2017
More than Moore devices fueled by megatrend applications will strongly drive the growth of the lithography, permanent bonding, and temporary bonding and debonding equipment market.

KEY FEATURES OF THE REPORT

- Wafer-to-Wafer (W2W) permanent bonding, lithography, temporary bonding and debonding tools for More than Moore (MtM) markets (advanced packaging, MEMS & sensors, CMOS Image Sensors (CIS), RF, LED and power applications) volume and value metrics forecasted for 2017–2023
 > by MtM device
 > by technology type
- Key technical insights into each equipment type covered, including trends, requirements and challenges
- Competitive landscape and 2017 market shares for each bonding and lithography equipment manufacturer by MtM device
- Technology roadmap for W2W permanent bonding, temporary bonding and debonding and lithography for each MtM device

Bundle offer possible with the Wafer to Wafer Permanent Bonding Comparison 2018 report by System Plus Consulting, contact us for more information.
Over the years, permanent wafer bonding has been a game changer for several applications in the semiconductor world. In radio-frequency (RF) applications, MEMS, and even for CMOS image sensors (CIS), it has reduced the surface area occupied and improved performance hugely. But depending on the application or the goal of the Original Equipment Manufacturers (OEMs), the technology can differ. For example, wafer bonding processes is used to reduce system footprints and signal losses by coupling the MEMS area with the application-specific integrated circuit (ASIC) controller. In this report, we will go through the main permanent wafer bonding technologies to see the pros and the cons of each.

Among these technologies, we have identified two main groups. One, bonding wafers without intermediate layers, includes fusion, copper-copper hybrid and anodic bonding approaches. The second group involves bonding wafers with intermediate layers using an insulator like a glass frit, or a metal in eutectic and thermocompression approaches. In this report, we show examples of each wafer bonding approach in different applications. We analyze and compare each wafer bonding process type to show the benefit in terms of cost and space used.

By switching from glass frit bonding to metal bonding thermo-compression, a manufacturer could reduce component area by up to 30%, reclaiming lost space around the active surface and cutting cost. However, some bonding technologies are currently used only in some market segments. For example, hybrid copper-copper bonding is only used in CIS and glass frit technology is found only in products in automotive and some consumer MEMS applications.

In the comparison, we have analyzed each component’s wafer bonding process, including component dimensions, cost and manufacturing approach. We provide an overview of technology costs and manufacturer choices by application and range. We offer buyers and device manufacturers a unique possibility of understanding permanent wafer bonding technology, evolution, and comparing process costs.
TABLE OF CONTENTS

Introduction
Permanent Wafer Bonding Technology
Permanent Wafer Bonding Definitions and Process Descriptions
 • Without intermediate layer
 ✓ Fusion bonding
 - CMOS image sensor
 - MEMS inertial sensor
 ✓ Cu-Cu/Oxide hybrid bonding
 - CMOS image sensor
 ✓ Anodic bonding
 - MEMS pressure sensor
 • With intermediate layer
 ✓ Glass frit
 - MEMS pressure sensor
 - MEMS inertial sensor
✓ Adhesive bonding
 - MEMS micro mirror
✓ Eutectic bonding
 - MEMS inertial sensor
 - Microbolometer
 - LED
✓ Thermo-compression bonding
 - MEMS RF
 - MEMS inertial sensor

Physical Comparison
Cost Comparison
Feedback
System Plus Consulting Services

AUTHORS

Audrey Lahrach is in charge of costing analyses for IC, LCD & OLED Displays and Sensor Devices. She holds a Master degree in Microelectronics from the University of Nantes.

Yvon Le Goff has joined System Plus Consulting in 2011, in order to setup the laboratory of System Plus Consulting. He previously worked during 25 years in Atmel Nantes Technological Analysis Laboratory as fab support in physical analysis.

Véronique Le Troade has joined System Plus Consulting as a laboratory engineer. She has extensive knowledge in failure analysis of components and in deprocessing of integrated circuits.

LINKED REPORT

Bonding and Lithography Equipment Market for More than Moore Devices – Market and Technology Report by Yole Développement

Bundle offer possible for the Wafer to Wafer Permanent Bonding Comparison 2018, contact us for more information at sales@systemplus.fr.

RELATED REPORTS

MEMS Packaging: Reverse Technology Review
October 2017 - Price: EUR 4,990*

MEMS Pressure Sensor Comparison 2018
May 2018 - EUR 4,990*

Status of the MEMS Industry 2018
May 2018 - EUR 6,490*
WHAT IS A REVERSE COSTING®?

Reverse Costing® is the process of disassembling a device (or a system) in order to identify its technology and calculate its manufacturing cost, using in-house models and tools.

CONTACTS

Headquarters
22, bd Benoni Goullin
Nantes Biotech
44200 Nantes
France
+33 2 40 18 09 16
sales@systemplus.fr

Europe Sales Office
Lizzie LEVENEZ
Frankfurt am Main
Germany
+49 151 23 54 41 82
llevenez@systemplus.fr

America Sales Office
Steve LAFFERIERE
Western USA
+1 310-600-8267
lafferiere@yole.fr
Troy BLANCHETTE
Eastern USA
+1 704-859-0453
troy.blanchette@yole.fr

Asia Sales Office
Takashi ONOZAWA
Japan & Rest of Asia
+81-80-4371-4887
onozawa@yole.fr
Mavis WANG
Greater China
+886 979 336 809
wang@yole.fr

SYSTEM PLUS CONSULTING

System Plus Consulting is specialized in the cost analysis of electronics from semiconductor devices to electronic systems. A complete range of services and costing tools to provide in-depth production cost studies and to estimate the objective selling price of a product is available.

Our services:
• STRUCTURE & PROCESS ANALYSES
• CUSTOM ANALYSES
• COSTING SERVICES
• COSTING TOOLS
• TRAININGS

www.systemplus.fr
sales@systemplus.fr
ORDER FORM

Please process my order for “Wafer to Wafer Permanent Bonding Comparison 2018” Reverse Costing® – Structure, Process & Cost Report
Ref: SP18430

☐ Full Structure, Process & Cost Report : EUR 4,990*
☐ Annual Subscription offers possible from 3 reports, including this report as the first of the year. Contact us for more information.

SHIP TO
Name (Mr/Ms/Dr/Pr): ..
Job Title: ...
Company: ...
Address: ...
City: .. State:
Postcode/Zip: ...
Country: ..
VAT ID Number for EU members:
Tel: ..
Email: ...
Date: ..
Signature: ..

BILLING CONTACT
First Name : ..
Last Name: ...
Email: ...
Phone: ...

PAYMENT
By credit card:
Number: |__|__|__|__| |__|__|__|__| |__|__|__|__| |__|__|__|__|
Expiry date: |__|__|/|__|__|
Card Verification Value: |__|__|__|

By bank transfer:
HSBC, 1 place de la Bourse, F-69002 Lyon, France
SWIFT or BIC code: CCFRFRPP
Bank code : 30056 - Branch code : 00170 - Account : 0170200156587
IBAN: FR76 3005 6001 7001 7020 0156 587

*For price in dollars please use the day’s exchange rate
*All reports are delivered electronically in pdf format
*For French customer, add 20 % for VAT
*Our prices are subject to change. Please check our new releases and price changes on www.i-micronews.com. The present document is valid 6 months after its publishing date: November 2018

ANNUAL SUBSCRIPTIONS

Each year System Plus Consulting releases a comprehensive collection of new reverse engineering and costing analyses in various domains. You can choose to buy over 12 months a set of 3, 4, 5, 7, 10 or 15 Reverse Costing® reports. Up to 47% discount!

More than 60 reports released each year on the following topics (considered for 2018):
- Power: GaN - IGBT - MOSFET - Si Diode - SiC
- Imaging: Camera - Spectrometer
- LED and Laser: UV LED – VCSEL - White/blue LED
- Packaging: 3D Packaging - Embedded - SIP - WLP
- Integrated Circuits: IPD – Memories – PMIC - SoC
- RF: FEM - Duplexer
- Systems: Automotive - Consumer - Energy - Telecom
Contact

Headquarters
22 bd Benoni Goullin
44200 Nantes
FRANCE
+33 2 40 18 09 16
sales@systemplus.fr

Europe Sales Office
Lizzie LEVENEZ
Frankfurt am Main
GERMANY
+49 151 23 54 41 82
llevenez@systemplus.fr

America Sales Office
Steve LAFERRIERE
Phoenix, AZ
WESTERN US
T: +1 310 600 8267
laferriere@yole.fr

Troy Blanchette
EASTERN US
T: +1 704 859 0456
troy.blanchette@yole.fr

Asia Sales Office
Takashi ONOZAWA
Tokyo
JAPAN
T: +81 804 371 4887
onozawa@yole.fr

Mavis WANG
TAIWAN
T: +886 979 336 809
wang@yole.fr

www.systemplus.fr