Vision systems are becoming increasingly important. Therefore, this report shows and explains the close links between embedded software and hardware in vision systems at the technology and market levels. What are the software technologies? How do they impact the hardware? Which hardware is impacted? What kinds of markets are affected? And how will they evolve?

We can consider software in vision systems as having two different levels. The first is very close to the hardware, inscribed inside standalone field programmable gate array (FPGA) or application specific integrated circuit (ASIC) chips, or integrated into more complicated architectures. This layer, not often considered, is the most important step in any image treatment after image acquisition by pixels. Image processing, realized in the image signal processor (ISP), has a quite simple function. It must transform a signal from the sensor to an understandable image for the human eye. It is composed as a pipeline of multiple blocks, where each block takes as input the output of the previous block. A lot of different algorithms are implemented to accomplish tasks such as removing artefacts, color correction and reproduction. This is done at a single-pixel or pixel-group level and does not need a lot of memory or power.

The second software layer is completely different, with much more diverse and complicated functions. In this report, we focused on embedded software and, more precisely, inference software derived from the latest artificial intelligence (AI) methods. This kind of technology necessitates a lot of memory and computing power. It uses complete image frames as input, and its goal is not to correct, but to analyze and understand the world in the picture. In vision systems, AI technology focuses on detection of eyes, faces, traffic signs, pedestrians, lanes, objects in front of cars and free space, and recognition of faces, irises, behaviors and gestures based on a mathematical technique called a neural network. This report especially investigates one of the most famous technologies, which has given spectacular results in recent years: deep learning.

Artificial intelligence technologies in vision systems

The shaded technologies are addressed in this report
AI has completely disrupted hardware in vision systems, and has had an impact on entire segments, like Mobileye has in automotive, for example. Image analysis adds a lot of value and image sensor builders are therefore increasingly interested in integrating a software layer to their system in order to capture it. Today, image sensors must go beyond taking images – they must be able to analyze them.

However, to run these types of software, high power computing and memory are necessary, which led to the creation and development of vision processors. The image signal processor (ISP) market offers a steady compound annual growth rate (CAGR) of 6.3%, making the total market worth $4,400M in 2017. Meanwhile, the vision processor market is exploding, with a 30.7% CAGR and a market worth $653M in 2017!

Today, optimization requires software and hardware to be developed in parallel. Depending on the issues and specifications, companies can invest more in hardware than software or vice versa. However, software is easier to specify, tune and update, and so its growth is more important than hardware. The AI market is therefore expected to reach $35B in 2025 with an estimated CAGR at 50% per year from 2017-2025.

This report carefully evaluates ISP and vision processor market shares and their evolution in order to correctly understand how AI technology impacts the hardware. This market has been divided in two different business models: Intellectual Property (IP) companies, which don’t have physical products, and hardware companies, which sell the processors physically. The leaders are pretty easy to identify for each category. ARM and Synopsys lead the IP segment and Omnivision, Mobileye and ON Semiconductor lead the hardware segment.

The AI market, particularly in vision systems, is new and still moving, with hundreds of startups created each year. It has no clear leaders but a lot of highly specialized companies. This report therefore gives a high-level view of driving forces, technology hype, and the most important mergers and acquisitions.

The main goal of this report is to understand what is happening with the emergence of AI. Even if it is not a new technology, thanks to technological factors AI has made a spectacular entry into vision systems. It opens new perspectives in various segments such as automotive, surveillance, biometrics and medical. However, it also poses ethical questions, which we have tried to answer.

AI technologies promise a bright future in many areas, with rapid software and hardware progress. In autonomous vehicles, AI allows cars to understand the world around them, predict trajectories, communicate and drive. This has led to the development of sensor fusion boards. For example, NVidia’s Drive PX boards provide very high performance computing and memory, giving the ability to compile information from many completely different sensors. In surveillance and security, face and iris recognition have never been as powerful, entering the consumer world through the iPhone X this year, and behavior recognition is on track.

<table>
<thead>
<tr>
<th>Amount of data processed</th>
<th>Frame processing</th>
<th>Vision processor</th>
<th>ISP from Altek</th>
<th>Vision processor from Mobileye</th>
<th>Sensor fusion processor from NVidia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set of pixels processing</td>
<td>Is part of</td>
<td>Vision processor</td>
<td>Introduction of AI algorithms</td>
<td>Vision processor from Mobileye</td>
<td>Fully AI to reach autonomy</td>
</tr>
</tbody>
</table>

\[\text{Amount of data processed} \rightarrow \text{Frame processing} \rightarrow \text{Vision processor} \rightarrow \text{ISP from Altek} \rightarrow \text{Vision processor from Mobileye} \rightarrow \text{Sensor fusion processor from NVidia} \rightarrow \text{Fully AI to reach autonomy}\]

\[(\text{Yole Développement, November 2017)}\]
Al is very exciting for the entire area of vision systems. This report tries to show why it is important to understand the technologies and their impacts, and how to react. Al is in vision systems, from technology to market.

Emergence of artificial intelligence - Technological factors

Approximate cost per GFLOPS (10^1 operations per second)

<table>
<thead>
<tr>
<th>Year</th>
<th>Cost per GFLOPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td>$100,000,000</td>
</tr>
<tr>
<td>1960</td>
<td>$1,000,000,000</td>
</tr>
<tr>
<td>1970</td>
<td>$10,000,000,000</td>
</tr>
<tr>
<td>1980</td>
<td>$100,000,000,000</td>
</tr>
<tr>
<td>1990</td>
<td>$1,000,000,000,000</td>
</tr>
<tr>
<td>2000</td>
<td>$10,000,000,000,000</td>
</tr>
<tr>
<td>2010</td>
<td>$100,000,000,000,000</td>
</tr>
<tr>
<td>2020</td>
<td>$1,000,000,000,000,000</td>
</tr>
</tbody>
</table>

Amount of data stored (Exabytes – 10^14 bytes)

<table>
<thead>
<tr>
<th>Year</th>
<th>Data Stored</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>1,000,000</td>
</tr>
<tr>
<td>2010</td>
<td>10,000,000</td>
</tr>
<tr>
<td>2012</td>
<td>100,000,000</td>
</tr>
<tr>
<td>2014</td>
<td>1,000,000,000</td>
</tr>
<tr>
<td>2016</td>
<td>10,000,000,000</td>
</tr>
<tr>
<td>2018</td>
<td>100,000,000,000</td>
</tr>
<tr>
<td>2020</td>
<td>1,000,000,000,000</td>
</tr>
</tbody>
</table>

(Yole Developpement, November 2017)
ORDER FORM
From image processing to deep learning, introduction to hardware and software

BILL TO
Name (Mr/Ms/Dr/Pr):
Job Title:
Company:
Address:
City:
State:
Postcode/Zip:
Country:

PAYMENT
BY CREDIT CARD
☐ Visa ☐ Mastercard ☐ Amex
Name of the Card Holder:
Credit Card Number:
Card Verification Value (3 digits except AMEX: 4 digits):
Expiration date:

BY BANK TRANSFER
BANK INFO: HSBC, 1 place de la Bourse, F-69002 Lyon, France,
Bank code: 30056, Branch code: 00170
Account No: 0170 200 1565 87,
SWIFT or BIC code: CCFRFRPP,
IBAN: FR76 3005 6001 7001 7020 0156 587

RETURN ORDER BY
• FAX: +33 (0)472 83 01 83
• MAIL: YOLE DÉVELOPPEMENT, Le Quartz,
75 Cours Emile Zola, 69100 Villeurbanne/Lyon - France

SALES CONTACTS
• North America - Steve Laferriere: +1310 600 267
laferriere@yole.fr
• Europe & RoW - Lizzie Levenez: +49 15 123 544 182
levenez@yole.fr
• Japan & Rest of Asia - Takashi Onozawa: +81 3 6869 6970
onozawa@yole.fr
• Greater China - Mavis Wang: +886 979 336 809
wang@yole.fr
• Specific inquiries: +33 472 830 180 – info@yole.fr

(1) Our Terms and Conditions of Sale are available at
www.yole.fr/Terms_and_Conditions_of_Sale.aspx
The present document is valid 24 months after its publishing date:
November 15, 2017

PRODUCT ORDER - REF: YDMS17049
Please enter my order for above named report:
☐ One user license*: Euro 5,490
☐ Multi user license: Euro 6,490
- The report will be ready for delivery from December 8, 2017
- For price in dollars, please use the day's exchange rate. All reports are
delivered electronically at payment reception. For French customers,
add 20% for VAT

I hereby accept Yole Développement’s Terms and Conditions of Sale(1)

Signature:

*One user license means only one person at the company can use the report.

BILL TO
Shipping Contact
First Name:
Email:

Last Name:
Phone:

SALES CONTACTS
• Consulting & Financial Services: Jean-Christophe Eloy (eloy@yole.fr)
• Reports: David Jourdan (jourdan@yole.fr) Yole Group of Companies
• Press Relations & Corporate Communication: Sandrine Leroy (leroy@yole.fr)

ABOUT YOLE DEVELOPPEMENT
Founded in 1998, Yole Développement has grown to become a group of companies providing marketing, technology and strategy consulting, media and corporate finance services, reverse engineering and reverse costing services and well as IP and patent analysis. With a strong focus on emerging applications using silicon and/or micro manufacturing, the Yole group of companies has expanded to include more than 80 collaborators worldwide covering MEMS and image sensors, Compound Semiconductors, RF Electronics, Solid-state lighting, Displays, software, Optoelectronics, Microfluidics & Medical, Advanced Packaging, Manufacturing, Nanomaterials, Power Electronics and Batteries & Energy Management.

The “More than Moore” market research, technology and strategy consulting company Yole Développement, along with its partners System Plus Consulting, PISEO and KnowMade, support industrial companies, investors and R&D organizations worldwide to help them understand markets and follow technology trends to grow their business.

CONSULTING AND ANALYSIS
• Market data & research, marketing analysis
• Technology analysis
• Strategy consulting
• Reverse engineering & costing
• Patent analysis
• Design and characterization of innovative optical systems
• Financial services (due diligence, M&A with our partner)
More information on www.yole.fr

MEDIAS & EVENTS
• i-Micronews.com website and related @Micronews e-newsletter
• Communication & webcast services
• Events: TechDays, forums,…
More information on www.i-micronews.com

REPORTS
• Technology reports
• Patent investigation and patent infringement risk analysis
• Teardowns & reverse costing analysis
• Cost simulation tool
More information on www.i-micronews.com/reports

CONTACTS
For more information about :
• Consulting & Financial Services: Jean-Christophe Eloy (eloy@yole.fr)
• Reports: David Jourdan (jourdan@yole.fr) Yole Group of Companies
• Press Relations & Corporate Communication: Sandrine Leroy (leroy@yole.fr)

(1) Our Terms and Conditions of Sale are available at www.yole.fr/Terms_and_Conditions_of_Sale.aspx
The present document is valid 24 months after its publishing date:
November 15, 2017